首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92640篇
  免费   5841篇
  国内免费   467篇
林业   4198篇
农学   4007篇
基础科学   990篇
  11642篇
综合类   14496篇
农作物   3530篇
水产渔业   5039篇
畜牧兽医   47962篇
园艺   1226篇
植物保护   5858篇
  2021年   716篇
  2020年   869篇
  2019年   1058篇
  2018年   1662篇
  2017年   1955篇
  2016年   1776篇
  2015年   1551篇
  2014年   1870篇
  2013年   3898篇
  2012年   3163篇
  2011年   3830篇
  2010年   2542篇
  2009年   2521篇
  2008年   3694篇
  2007年   3397篇
  2006年   3299篇
  2005年   2823篇
  2004年   2636篇
  2003年   2711篇
  2002年   2475篇
  2001年   3485篇
  2000年   3385篇
  1999年   2592篇
  1998年   1026篇
  1997年   1059篇
  1996年   931篇
  1995年   1084篇
  1994年   948篇
  1993年   952篇
  1992年   1885篇
  1991年   1956篇
  1990年   1893篇
  1989年   1878篇
  1988年   1631篇
  1987年   1613篇
  1986年   1638篇
  1985年   1530篇
  1984年   1233篇
  1983年   1038篇
  1982年   719篇
  1979年   1060篇
  1978年   816篇
  1975年   815篇
  1974年   897篇
  1973年   864篇
  1972年   805篇
  1971年   795篇
  1970年   800篇
  1969年   780篇
  1967年   734篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
2.
3.
4.
从湖南省甘薯种植发展趋势入手,剖析了近年来湖南省甘薯产品功能从饱腹鲜食向多样化需求转变、产业布局由边远山区向经济发达地区拓展以及产业发展由单一粗放向规模化优质化转变的发展现状,指出了当前甘薯产业发展过程中存在产业发展缺乏顶层设计、种薯种苗繁育体系空白、基础设施建设滞后、产业化发展程度不高和科技支撑服务能力不足等问题,基于这些问题,提出了加强规划引领、构建现代种业体系、加强基础设施建设、推动全产业链发展、强化科技推广服务、加大政策扶持力度等推进甘薯产业高质量发展的对策.  相似文献   
5.
为评估四川省兽医系统实验室检测能力和水平,2018—2020年四川省动物疫病预防控制中心组织全省21个地市(州)级兽医实验室开展了检测能力比对。结果显示:2018—2020年全省整体平均正确率分别为95.59%、97.09%和97.88%,说明四川省地市(州)级兽医实验室检测能力处于较高水平,能满足非洲猪瘟、禽流感等重大动物疫病检测需要。同时,部分实验室也反映出一些问题,如设备差、检测水平不高、检测报告不规范等。建议加大兽医实验室建设力度,更新完善检测设施设备;加强实验室技术人员培训,提升其检测能力和水平;同时继续推进兽医系统实验室考核工作,加强比对考核。  相似文献   
6.
Despite the broad variety of available microRNA (miRNA) research tools and methods, their application to the identification, annotation, and target prediction of miRNAs in nonmodel organisms is still limited. In this study, we collected nearly all public sRNA-seq data to improve the annotation for known miRNAs and identify novel miRNAs that have not been annotated in pigs (Sus scrofa). We newly annotated 210 mature sequences in known miRNAs and found that 43 of the known miRNA precursors were problematic due to redundant/missing annotations or incorrect sequences. We also predicted 811 novel miRNAs with high confidence, which was twice the current number of known miRNAs for pigs in miRBase. In addition, we proposed a correlation-based strategy to predict target genes for miRNAs by using a large amount of sRNA-seq and RNA-seq data. We found that the correlation-based strategy provided additional evidence of expression compared with traditional target prediction methods. The correlation-based strategy also identified the regulatory pairs that were controlled by nonbinding sites with a particular pattern, which provided abundant complementarity for studying the mechanism of miRNAs that regulate gene expression. In summary, our study improved the annotation of known miRNAs, identified a large number of novel miRNAs, and predicted target genes for all pig miRNAs by using massive public data. This large data-based strategy is also applicable for other nonmodel organisms with incomplete annotation information.  相似文献   
7.
Drought severely limits crop yield of peanut. Yet cultivars with enhanced root development enable the exploration of a greater volume of soil for water and nutrients, helping the plant survive. Root distribution patterns of three genotypes (ICGV 98305, ICGV 98324 and Tifton‐8) were compared when grown in well‐watered rhizoboxes and when grown in rhizoboxes where an early‐season drought was imposed using rain‐exclusion shelters. The treatments were arranged in a completely randomized design with three replications, and the experiment was conducted during two seasons at the Field Crop Research Station of Khon Kaen University, in Khon Kaen, Thailand. The root system of ICGV 98305, when grown under drought, had a significantly higher root length in the 30–110 cm deep soil layers and less roots in the 0–30 cm soil layers when under drought than when grown under well‐watered conditions. Roots of Tifton‐8 had the largest reductions in root length in upper soil layer and reduced in most soil layers. Tifton‐8 grown under drought was smaller than under well‐watered control for all root traits, showing negative response to drought. The peanut genotypes with high root traits in deeper soil layer under early‐season drought might contribute to drought avoidance mechanism.  相似文献   
8.
Possibilities to improve maize harvest index and nutrient utilization efficiency by application of plant growth regulators were investigated. In container experiments, the effects of different growth regulators on the development of the maize (Zea mays L.) cultivars Pioneer 3906 and Fabregas were tested. Paclobutrazol (PAC) and chlorocholine chloride (CCC), two inhibitors of gibberellin biosynthesis, as well as gibberellic acid (GA3) were applied at growth stage V5. Three weeks after application of PAC, shoot growth of both maize cultivars was strongly affected with a significant decrease in plant height in the PAC treatment by 44% and 36% for Pioneer 3906 and Fabregas, respectively. The growth‐retarded plants had higher leaf areas and reduced transpiration rates. The higher shoot growth after GA3 application was accompanied by a reduction in leaf area and an increase in transpiration rate during 1 week before anthesis. CCC treatment showed no significant effects on plant height, leaf area and transpiration rate. The PAC‐treated cultivar Pioneer 3906 produced several cobs per plant, which were mainly barren at maturity. However, PAC application to Fabregas resulted in just one cob per plant with good kernel development and a grain yield, which was not significantly reduced in comparison with the control. With this similar grain yield in combination with a straw yield decrease of 32%, the harvest index was significantly improved by 12%. In addition, with PAC‐treated Fabregas plants, a 19% increased water use efficiency of the grain (WUEgrain) during the critical period of kernel setting was achieved. In this maize cultivar, CCC application also improved harvest index by 5%, but no effect on WUEgrain occurred. GA3 treatment decreased harvest index of both maize cultivars, and it either reduced WUEgrain (Pioneer 3906) or showed no effect (Fabregas). Utilization efficiencies of N, P and K were not increased with growth regulator application, even in the PAC‐treated Fabregas plants with a significantly improved allocation of assimilates to the grain, mirrored by the higher harvest index. The results indicate that fertilizer applications must be adjusted to the reduced demand of growth‐retarded plants, most likely leading to higher nutrient utilization efficiencies.  相似文献   
9.
10.
Increasingly, weeds have been taking on global distributions. With the proliferation of invasive weeds has come the challenge of managing these species over broad geographical regions, with diverse habitats and political jurisdictions. Here, we review the management of Mikania micrantha Kunth (Asteraceae; mile‐a‐minute) throughout its invaded range, extending through most of the Pacific islands and southern and south‐east Asia. Context matters when determining the best course of action for managing M. micrantha, as it has invaded a large variety of agricultural and natural systems. In Queensland, Australia and Florida, USA, M. micrantha has been targeted in relatively successful eradication campaigns, highlighting the importance of early detection and rapid response methods, while elsewhere in its invaded range, populations are either still increasing or showing limited signs of decline. An inter‐regional approach to research and management should incorporate successful management strategies employed throughout the invaded range including, but not limited to, chemical and cultural control practices, manual and mechanical control, classical biological control using the rust fungus Puccinia spegazzinii, plant–plant competition and integrated approaches utilising two or more control methods concurrently. Additional knowledge of M. micrantha genetics is required to determine if management approaches could be fine‐tuned for particular populations. Countries bordering the Mekong River formed a network in 2011 to co‐ordinate the management of invasive species such as M. micrantha. Expanding such a collaborative approach to other regions could further reduce populations of M. micrantha and limit its spread.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号