首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
林业   10篇
  3篇
  2020年   1篇
  2016年   2篇
  2015年   1篇
  2013年   3篇
  2011年   1篇
  2007年   1篇
  2004年   3篇
  2000年   1篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
Dendrochronological approaches enable us to understand forest stand dynamics by estimation of disturbance history and age structure. The present study was conducted in an old-growth beech forest in a forest reserve in western Japan. Increment cores were taken for tree ring analysis from all canopy trees in a 50 m × 130 m study plot. Radial growth release criteria were developed to identify significant growth releases in each tree ring series and to characterize the disturbance history of the study site. The age structure of the forest was indicative of continuous establishment by Fagus crenata and simultaneous establishment by Magnolia obovata. A variety of low-intensity disturbances were identified in each decade, especially after the 1900s, but the occurrence of high-intensity catastrophic disturbance was rare, and likely played an important role in maintaining species diversity in the existing forest canopy. The results also suggest that F. crenata regenerates gradually before and after both large- and small-scale disturbances, whereas M. obovata and Betula grossa regenerate only after large-scale catastrophic disturbances.  相似文献   
2.
The effects of tree species on the dynamics of nutrient transformations during leaf-litter decomposition are not well understood in tropical rain forests. To examine differences in the dynamics of C, nutrients, and organic constituents during decomposition among tree species, the leaf-litter decomposition of 15 trees was assessed using a litter-bag method in a lowland tropical rain forest in Sarawak. The dynamics of C was parallel to that of weight loss. The dynamics of nutrients were grouped into three patterns. The dynamics of K was characterized by a high leaching loss in the initial stages, and that of Ca and Mg generally showed a gradual decrease over the course of decomposition. The dynamics of N and P showed highly different patterns with the weight loss, and was characterized by relatively higher remaining mass at the end of the experiment. The variations or exceptions of nutrient dynamics among tree species were considered to be related to the initial concentration of each nutrient. For the dynamics of organic constituents, water-soluble carbohydrates disappeared quickly at the initial stages, and acid-soluble carbohydrates were the second fastest decomposing fraction; the decomposition of acid-insoluble residue (AIS) was the slowest. The release of limiting nutrients (N and P) generally followed the disappearance of AIS, but was independent of the disappearance of AIS when the initial concentrations of these nutrients were very low.  相似文献   
3.
In a lowland tropical rain forest in Sarawak, leaf-litter decomposition and the initial litter chemistry of 15 tree species were studied. During 13 months of field experiment, weight loss of litter samples was between 44% and 91%, and calculated decomposition rate constants (k) ranged from 0.38 to 2.36 year−1. The initial litter chemistry also varied widely (coefficients of variation: 19%–74%) and showed low N and P concentrations and high acid-insoluble residue (AIS) concentration. For nutrient-related litter chemistry, correlations with the decomposition rate were significant only for P concentration, C/P ratio, and AIS/P ratio (r s = 0.59, −0.62, and −0.68, n = 15, P < 0.05, respectively). For organic constituents, correlations were significant for concentrations of AIS and total carbohydrates, and AIS/acid-soluble carbohydrate ratio (r s = −0.81, 0.51, and −0.76, n = 15, P < 0.05, respectively). These results suggested that the relatively slow mean rate of decomposition (k = 1.10) was presumably due to the low litter quality (low P concentration and high AIS concentration), and that P might influence the decomposition rate; but organic constituents, especially the concentration of AIS, were more important components of initial litter chemistry than nutrient concentrations.  相似文献   
4.
We investigated the effects of disturbances on the dynamics of white birch-dominated forests at the southern boundary of the Mongolian forest-steppe. Dendroecological techniques were used to assess regeneration patterns and recent mortality trends in three stands with no evidence of recent anthropogenic disturbance (undisturbed) and four stands with evidence of cutting or fire (disturbed). In the undisturbed stands, only one distinct stem establishment was observed in the period between 1910 and 1950, and no establishment has been observed since then. In the disturbed stands, however, high establishment mainly by sprouting was observed in the period between 1960 and 1980. Percentages of standing dead stems were higher in the undisturbed stands than in the disturbed stands. Mean ages at death in the undisturbed stands were ≥70 years old. The high mortality was likely induced by the death of smaller stems due to light competition, whereas the mortality of larger stems was likely the result of tree senescence. In summary, the undisturbed stands seem to be in danger of decline due to a lack of regeneration during the last half of the previous century and recent high mortality rates of older stems, while the disturbed stands may be maintained for the next several decades by the younger cohort established between 1960 and 1980. White birch-dominated forests at the southern boundary of Mongolian forest-steppe have probably relied on relatively short disturbance intervals in the past because of the disturbance-dependent regeneration trait and relatively short longevity of Betula species.  相似文献   
5.
Forest development in temperate regions is considered to be a global carbon sink. Many studies have examined forest development after harvesting or fire from aboveground (e.g., biomass) or belowground (e.g., soil nutrient) perspectives. However, few studies have explored forest development from both perspectives simultaneously in cool-temperate forests in Japan. In this study, we examined changes over 105 years in both aboveground and belowground components during secondary natural succession. The aboveground biomass increased for 50 years and reached a plateau in a 105-year-old stand. The N mineralization rate increased during succession for 50 years, but showed a decline in the 105-year-old stand due to the decrease in the nitrification rate in late succession. The percent nitrification (i.e., relative contribution of nitrification to N mineralization) decreased significantly with increasing forest stand age. The N mineralization rates had significant relationships with N concentrations of the dominant tree foliage and litter fall and with the amount of litter fall N. Meanwhile, other belowground properties (i.e., soil pH, phenol concentration, soil microbial respiration, and litter mass loss) did not show any significant relationship with forest stand age. This may be because the soil at the study sites was heterogeneous and consisted of Cambisols and Andosols, the latter of which originally has high organic matter content, and thus may have buffered the effect of the aboveground development. These results indicate that belowground N dynamics are more closely associated with aboveground development than other belowground properties in these forests.  相似文献   
6.
We present results of individual-based root system measurement and analysis applied for Larix gmelinii trees growing on the continuous permafrost region of central Siberia. The data of root excavation taken from the three stands were used for the analyses; young (26 years old), mature (105 years old), and uneven-aged over-mature stand (220 years old). In this article, we highlight two topics: (1) factors affecting spatio-temporal pattern of root system development, and (2) interactions between aboveground (i.e., crown) and belowground (i.e., root) competition. For the first topic, the detailed observation of lateral roots was applied to one sample tree of the overmature stand. The tree constructed a superficial (<30 cm in depth) and rather asymmetric root system, and each lateral root expanded mainly into elevated mounds rather than depressed troughs. This indicated that spatial development of an individual root system was largely affected by microtopography (i.e., earth hummocks). For these lateral roots, elongation growth curves were reconstructed using annual-ring data, and annual growth rates and patterns were compared among them. The comparison suggested that temporal root system development is associated with differences in carbon allocation among the lateral roots. For the second topic, we examined relationships between individual crown projection area (CA) and horizontal rooting area (RA) for the sample trees of each stand. RA was almost equal to CA in the young stand, while RA was much larger (three or four times) than CA in the mature and overmature stands. Two measures of stand-level space occupation, crown area index (aboveground: CAI; sum of CAs per unit land area) and rooting area index (belowground: RAI; sum of RAs), were estimated in each stand. The estimates of RAI (1.3–1.8 m2 m−2) exceeded unity in all stands. In contrast, CAI exceeded unity (1.3 m2 m−2) only in the young stand, and was much smaller (<0.3 m2 m−2) in the two older stands. These between-stand differences in RAI–CAI relationships suggest that intertree competition for both aboveground and belowground spaces occurred in the young stand, but only belowground competition still occurred in the two older stands. Based on this finding, we hypothesized that competition below the ground may become predominant as a stand ages in L. gmelinii forests. Methodological limitations of our analysis are also discussed, especially for the analysis using the two indices of space occupation (CAI, RAI).  相似文献   
7.
General decline of understory cover can result from increased abundance of and foraging pressure by deer.But population size and degree of aggregation can increase for unpalatable understory plants that escape foraging pressure.Clonal reproduction can enable unpalatable plant species to increase their population sizes while trending toward spatially aggregated distributions.However,the details of the relationship between clonal reproduction in unpalatable plants and their dynamics under intensive deer herbivory are not clear.We compared the population structures and spatial patterns of two coexisting unpalatable plant species,Arisaema ovale(with clonal reproduction)and A.peninsulae(without clonal reproduction)in a riparian forest intensively grazed by Sika deer,and examined the null hypothesis that the extent of spatial aggregation and local population size would not differ between the clonal and non-clonal Arisaema species.In a 0.36-ha plot,A.ovale had a larger population size(1087 individuals)with a higher abundance ratio of small plants(p<0.01)than A.peninsulae(84 individuals).Analyses of spatial point processes showed that both populations were spatially aggregated(p<0.05).The spatial aggregation of A.peninsulae,however,became weaker than that of A.ovale,when we excluded one dense patch originating from irregular seed dispersion.These results,excluding the aggregated distribution observed in A.peninsulae,suggested a substantial contribution of clonal reproduction to the expansion of the local A.ovale population following intensive grazing by Sika deer.  相似文献   
8.
9.
Water-extractable organic carbon (WEOC) drives the C and N cycles in forest ecosystems via microbial activity. However, few studies have considered both then spatial and temporal patterns of WEOC in forest soils. We investigated the spatial and temporal variation in WEOC along a topographic sequence in a cool temperate deciduous forest. The concentrations of WEOC, carbohydrates, total phenols, and other organics were 126±51, 40±15, 1.5±0.5 and 85±43 mg C kg dry soil−1, respectively. Carbohydrates and phenols accounted for 33±11 and 1.5±1.0% of WEOC, respectively. The effect of season on the WEOC concentration was stronger than that of slope position the growing season, although most of the soil properties varied markedly with slope position. The concentration of carbohydrates in WEOC showed similar seasonal patterns across slope positions. The carbohydrate concentration peaked in May and August. The results suggest that carbohydrates are controlled by the recent production of C, rather than by organic C that has accumulated in soil.  相似文献   
10.
Soil N transformation was investigated using15N dilution method along a slope on a conifer plantation forest. Although there was no significant difference in the net N mineralization rates by laboratory incubation, net nitrification rates increased downslope. Gross N transformation by15N dilution method showed a distinct difference not only on the rates, but also on the main process between the lower and the upper of the slope. Half of minelarized N was immobilized and the other half was left in NH 4 + pool at the upper part of the slope, while all of mineralized N was used for immobilization or nitrification and NH 4 + pool decreased at the lower of the slope. Soil N transformations were classified into two groups: one was shown below 773 m and the other was shown above 782 m. The incubation with nitrification inhibitor showed that nitrification was mainly conducted by autotrophs irrespective of the position of the slope. Microbial biomass and microbial C/N were similar among the sites. However, the gross mineralization rate was higher below 773 m than above 782 m under similar respiration rates. This suggests that the substrate quality may be one of the controlling factors for soil N transformation. Extractable organic C/N was similar to microbial C/N at the lower of the slope. It indicated that the substrate was more decomposable below 773 m. It is considered that soil N transformation is affected by topographical gradient of moisture and nutrient which makes plant growth and decomposition rate different.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号