首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   381篇
  免费   34篇
林业   22篇
农学   7篇
基础科学   2篇
  64篇
综合类   42篇
农作物   10篇
水产渔业   125篇
畜牧兽医   105篇
园艺   10篇
植物保护   28篇
  2021年   2篇
  2019年   10篇
  2018年   3篇
  2017年   9篇
  2016年   17篇
  2015年   11篇
  2014年   15篇
  2013年   11篇
  2012年   22篇
  2011年   29篇
  2010年   18篇
  2009年   9篇
  2008年   23篇
  2007年   22篇
  2006年   13篇
  2005年   27篇
  2004年   15篇
  2003年   19篇
  2002年   19篇
  2001年   15篇
  2000年   6篇
  1999年   6篇
  1998年   7篇
  1996年   3篇
  1995年   10篇
  1994年   6篇
  1993年   5篇
  1992年   4篇
  1991年   4篇
  1990年   4篇
  1987年   4篇
  1985年   5篇
  1983年   4篇
  1981年   4篇
  1979年   4篇
  1977年   3篇
  1976年   1篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1967年   1篇
  1966年   2篇
  1965年   1篇
  1961年   1篇
  1958年   1篇
  1957年   1篇
  1955年   1篇
  1954年   2篇
  1948年   2篇
  1947年   2篇
排序方式: 共有415条查询结果,搜索用时 171 毫秒
1.
  1. Otolith microchemistry was used to identify marine‐ versus freshwater‐derived recruitment of three native freshwater fish species belonging to the southern hemisphere family Galaxiidae, in New Zealand's longest river system, the Waikato River.
  2. Water chemistry data for trace elements and 87Sr/86Sr isotope ratios were collected from five lentic and 10 lotic water bodies throughout the lower river floodplain. Potential spawning sites for galaxiids were compared with values obtained by laser ablation inductively coupled mass spectrometry (LA‐ICPMS) depth profiling of young‐of‐the‐year otoliths sampled from fish in nine lower river catchment sites.
  3. Otolith chemical signatures from the larval rearing period indicated that catchment‐scale recruitment for two species, Galaxias argenteus (Gmelin, 1789) and Galaxias fasciatus Gray, 1842, was driven predominantly by non‐diadromous recruitment from one lake (Lake Waahi). In contrast, diadromous recruitment appeared to be more common for Galaxias maculatus (Jenyns, 1842); however, non‐diadromous specimens were also identified for the first time from a New Zealand river.
  4. Reversing lake outlet flows linked to river stage appears be important in facilitating the dispersal of rheotactic larvae out of lakes, suggesting that lake outflow management at key times could be used to sustain this ecologically important function.
  5. This study highlights that some water bodies can supply a disproportionately large number of recruits to support fish populations within the wider riverscape. Identifying these water bodies and managing them to sustain recruitment is key to the conservation of non‐diadromous Galaxiidae in this modified lowland environment
  相似文献   
2.
3.

Context

The study of habitat fragmentation is complex because multiple, potentially synergistic, ecological processes may be acting simultaneously. Further, edge effects themselves may be complex in that additivity from multiple edges can give rise to heterogeneous nearest–edge gradients.

Objectives

We used heat diffusion as a proxy for additive edge effects in two study landscapes in order to test whether two key observations recently attributed to synergy between edge and area effects could be more simply explained by additivity; namely, steeper edge gradients in larger fragments and variation in slopes of species–area relationships as a function of distances to fragment edges.

Methods

We sampled forest structure in northwestern Madagascar at various distances from the edge in fragments and continuous forest and used an inverse modelling approach to parameterize the model. In addition, we applied the model to data from a published study of beetle communities in fragmented forests in New Zealand.

Results

With increasing proximity to edges, woody stem densities decreased and, as predicted, smaller fragments had lower stem densities and less steep edge gradients than larger ones. The model successfully predicted shifts in species–area relationships as a function of nearest–edge distances for beetle species, although observed richness for forest specialists in the smallest fragments was lower than predicted.

Conclusions

Two key observations attributed to synergy between edge and area effects were explained by edge additivity. The model is particularly useful in that it can help to disentangle the complex sets of processes acting in fragmented landscapes.
  相似文献   
4.
5.
6.
Burgess  Malcolm  Gregory  Richard  Wilson  Jeremy  Gillings  Simon  Evans  Andy  Chisholm  Kenna  Southern  Adrian  Eaton  Mark 《Landscape Ecology》2019,34(12):2765-2778
Context

Organisations acting to conserve and protect species across large spatial scales prioritise to optimise use of resources. Spatial conservation prioritization tools typically focus on identifying areas containing species groups of interest, with few tools used to identify the best areas for single-species conservation, in particular, to conserve currently widespread but declining species.

Objective

A single-species prioritization framework, based on temporal and spatial patterns of occupancy and abundance, was developed to spatially prioritize conservation action for widespread species by identifying smaller areas to work within to achieve predefined conservation objectives.

Methods

We demonstrate our approach for 29 widespread bird species in the UK, using breeding bird atlas data from two periods to define distribution, relative abundance and change in relative abundance. We selected occupied 10-km squares with abundance trends that matched species conservation objectives relating to maintaining or increasing population size or range, and then identified spatial clusters of squares for each objective using a Getis-Ord-Gi* or near neighbour analysis.

Results

For each species, the framework identified clusters of 20-km squares that enabled us to identify small areas in which species recovery action could be prioritized.

Conclusions

Our approach identified a proportion of species’ ranges to prioritize for species recovery. This approach is a relatively quick process that can be used to inform single-species conservation for any taxa if sufficiently fine-scale occupancy and abundance information is available for two or more time periods. This is a relatively simple first step for planning single-species focussed conservation to help optimise resource use.

  相似文献   
7.
This study tests the basic hypothesis that the removal of charr, Salvelinus alpinus (L.), would cause an increase in both the growth and density of a sympatric trout population, Salmo trutta L. The charr population was characterised by slow‐growing individuals, with a high proportion of mature fish, that is typical for so‐called overpopulated populations. A total of 31,000 charr was removed from the lake in the period 1990–1992, and the density of younger trout (1+, 2+), but not older trout (3+, 4+), increased. The growth of older trout (3+, 4+) increased, but the evidence for similar growth increases of younger trout (1+, 2+) was limited. From 1989 to 1990, the proportion of trout increased from 30 to only 40% of the total catch, but from 1991 to 1994, it was significantly higher (60–80%) than that of charr. Total trout biomass increased to a maximum in 1992 and then decreased so that the biomass of 1994 was nearly similar to that of 1989, that is before the start of the charr removal. Back‐calculated lengths of trout from otoliths showed that 2+ and 3+ trout caught in the pelagic were growing consistently faster over previous years than those caught in the littoral, while this was not the case for the 4+ fish. Therefore, the hypothesis was partially supported; the growth rate of trout increased (age groups 1+ to 4+), while the density of juvenile trout (1+, 2+), but not the older trout (3+, 4+), increased after the removal of charr.  相似文献   
8.
An adequate supply of nitrogen (N) is essential for the successful establishment and sustainable productivity of forest stands. N deficits may necessitate the use of artificial fertilisers. Availability of N in the inorganic forms, and the relative abundance of the NO3-N and NH4-N components, influences the species composition of natural forest vegetation. Hence it is essential to use reliable measures of soil N supply that fully reflect its ecological significance. The new Ecological Site Classification (ESC) used in British forestry employs a multi-factorial definition of soil nutrient regime (SNR), including soil N. To develop this, a soil and vegetation study was made at 89 forest sites throughout Great Britain covering the major soil types used for forestry. “Total N” levels were compared with separate pre- and post-incubation measures of the two inorganic N components as potential indices of soil N supply. Multivariate statistical analysis showed that the major discriminant chemical variables for the sampled soils were pH, calcium and NO3-N and that these were also the main variables influencing the species composition of the ground vegetation. Total N and NH4-N were less effective discriminant variables for these sites. In some infertile soils the levels of NH4-N or total N may be of greater importance, as NO3-N is usually in very limited supply. A multivariate gradient of SNR, which incorporates the NO3-N measures, has been adopted for use within the ESC system. The position of a site on this gradient can be estimated quantitatively from soil type, ground vegetation species composition and humus type. This enables soil N supply and overall SNR to be assessed in a simple but effective way that guides the operational management of British forest soils for sustainable productivity. It will also be possible to use these techniques to monitor the nutritional status of forest sites over time.  相似文献   
9.
This study evaluated the impact of time between the application of cell suspensions or cell-free filtrates of Bacillus subtilis strains SB01 or SB24 on soybean plants under field conditions and inoculation with Sclerotinia sclerotiorum on their effectiveness for suppression of S. sclerotiorum. The results showed that the cell suspensions of two strains provided greater effectiveness than the cell-free filtrates, but the suppression effectiveness decreased as the time between application in the field and S. sclerotiorum inoculation increased. The B. subtilis cell suspensions applied on soybean leaves for up to 10 days under field conditions were able to provide a significant (P < 0.01) reduction in disease severity by approximately 20–90% at 5 days after the S. sclerotiorum inoculation. When rated 15 days after S. sclerotiorum inoculation, plants treated with bacterial cells for ≤6 days reduced Sclerotinia stem rot severity by 15–70%. Most effectiveness was provided by the cell suspensions present on soybean leaves for <3 days under field conditions, which significantly (P < 0.01) reduced disease severity by 40–70% over 15 days. In comparison, the cell-free filtrates remaining on leaves for <6 days significantly (P < 0.01) reduced disease severity during the first 5 days after the inoculation, while the best cell-free filtrate treatments were those with ≤1-day intervals, which significantly (P < 0.01) reduced disease severity by 10–40% during 15 days after the inoculation. The effectiveness of B. subtilis was reduced when it rained after application.  相似文献   
10.
Fire plays an important role in shaping many Sierran coniferous forests, but longer fire return intervals and reductions in area burned have altered forest conditions. Productive, mesic riparian forests can accumulate high stem densities and fuel loads, making them susceptible to high-severity fire. Fuels treatments applied to upland forests, however, are often excluded from riparian areas due to concerns about degrading streamside and aquatic habitat and water quality. Objectives of this study were to compare stand structure, fuel loads, and potential fire behavior between adjacent riparian and upland forests under current and reconstructed active-fire regime conditions. Current fuel loads, tree diameters, heights, and height to live crown were measured in 36 paired riparian and upland plots. Historic estimates of these metrics were reconstructed using equations derived from fuel accumulation rates, current tree data, and increment cores. Fire behavior variables were modeled using Forest Vegetation Simulator Fire/Fuels Extension.Riparian forests were significantly more fire prone under current than reconstructed conditions, with greater basal area (BA) (means are 87 vs. 29 m2/ha), stand density (635 vs. 208 stems/ha), snag volume (37 vs. 2 m3/ha), duff loads (69 vs. 3 Mg/ha), total fuel loads (93 vs. 28 Mg/ha), canopy bulk density (CBD) (0.12 vs. 0.04 kg/m3), surface flame length (0.6 vs. 0.4 m), crown flame length (0.9 vs. 0.4 m), probability of torching (0.45 vs. 0.03), predicted mortality (31% vs. 17% BA), and lower torching (20 vs. 176 km/h) and crowning indices (28 vs. 62 km/h). Upland forests were also significantly more fire prone under current than reconstructed conditions, yet changes in fuels and potential fire behavior were not as large. Under current conditions, riparian forests were significantly more fire prone than upland forests, with greater stand density (635 vs. 401 stems/ha), probability of torching (0.45 vs. 0.22), predicted mortality (31% vs. 16% BA), and lower quadratic mean diameter (46 vs. 55 cm), canopy base height (6.7 vs. 9.4 m), and frequency of fire tolerant species (13% vs. 36% BA). Reconstructed riparian and upland forests were not significantly different. Our reconstruction results suggest that historic fuels and forest structure may not have differed significantly between many riparian and upland forests, consistent with earlier research suggesting similar historic fire return intervals. Under current conditions, however, modeled severity is much greater in riparian forests, suggesting forest habitat and ecosystem function may be more severely impacted by wildfire than in upland forests.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号