首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1822篇
  免费   216篇
林业   147篇
农学   87篇
基础科学   15篇
  314篇
综合类   62篇
农作物   122篇
水产渔业   257篇
畜牧兽医   811篇
园艺   42篇
植物保护   181篇
  2024年   3篇
  2023年   34篇
  2022年   42篇
  2021年   96篇
  2020年   122篇
  2019年   139篇
  2018年   134篇
  2017年   116篇
  2016年   136篇
  2015年   72篇
  2014年   104篇
  2013年   110篇
  2012年   148篇
  2011年   124篇
  2010年   69篇
  2009年   78篇
  2008年   77篇
  2007年   81篇
  2006年   63篇
  2005年   38篇
  2004年   41篇
  2003年   36篇
  2002年   30篇
  2001年   22篇
  2000年   22篇
  1999年   17篇
  1998年   10篇
  1997年   8篇
  1996年   6篇
  1995年   3篇
  1994年   3篇
  1992年   3篇
  1991年   6篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   5篇
  1985年   6篇
  1984年   2篇
  1983年   3篇
  1981年   1篇
  1979年   1篇
  1976年   3篇
  1974年   2篇
  1973年   3篇
  1972年   3篇
  1970年   2篇
  1969年   1篇
  1967年   2篇
排序方式: 共有2038条查询结果,搜索用时 62 毫秒
1.
Environmental conditions influence phenology and physiological processes of plants. It is common for maize and sorghum to be sown at two different periods: the first cropping (spring/summer) and the second cropping (autumn/winter). The phenological cycle of these crops varies greatly according to the planting season, and it is necessary to characterize the growth and development to facilitate the selection of the species best adapted to the environment. The aim of this study was to characterize phenological phases and physiological parameters in sorghum and maize plants as a function of environmental conditions from the first cropping and second cropping periods. Two parallel experiments were conducted with both crops. The phenological characterization was based on growth analyses (plant height, leaf area and photoassimilate partitioning) and gas exchange evaluations (net assimilation rate, stomatal conductance, transpiration and water-use efficiency). It was found that the vegetative stage (VS) for sorghum and maize plants was 7 and 21 days, respectively, longer when cultivated during the second cropping. In the first cropping, the plants were taller than in the second cropping, regardless of the crop. The stomatal conductance of sorghum plants fluctuated in the second cropping during the development period, while maize plants showed decreasing linear behaviour. Water-use efficiency in sorghum plants was higher during the second cropping compared with the first cropping. In maize plants, in the second cropping, the water-use efficiency showed a slight variation in relation to the first cropping. It was concluded that the environmental conditions as degree-days, temperature, photoperiod and pluvial precipitation influence the phenology and physiology of both crops during the first and the second cropping periods, specifically cycle duration, plant height, leaf area, net assimilation rate, stomatal conductance and water-use efficiency, indicating that both crops respond differentially to environmental changes during the growing season.  相似文献   
2.
3.
4.
5.
In this study, we evaluated the effects of including cassava wastewater in the diet on the feeding behavior of feedlot lambs in 35 male uncastrated Santa Inês × Dorper crossbred lambs at an approximate age of 3 months, with an average live weight of 20.0?±?3.4 kg. Diets were formulated with hay of cassava shoots (roughage) and a concentrate based on corn and soybean, with a roughage:concentrate ratio of 50:50, plus inclusion of cassava wastewater at the levels of 0, 12, 24, 36, or 48 g/kg of the total diet. Feeding behavior was evaluated between the 46th and 52nd days of the experiment. Increasing cassava wastewater levels in the diet reduced (P?<?0.05) the intakes (kg/day) of dry matter and neutral detergent fiber as well as the efficiency of rumination (g/cud and g/h) of dry matter and neutral detergent fiber. The other behavioral parameters were not affected by wastewater inclusion in the diet. Therefore, the inclusion of up to 48 g/kg of cassava wastewater on fresh matter of diets is not recommended for feedlot lambs.  相似文献   
6.
Effects of adding different concentrations of melatonin (10?7, 10?9 and 10?11 M) to maturation (Experiment 1; Control, IVM  + 10?7, IVM  + 10?9, IVM  + 10?11) and culture media (Experiment 2; Control, IVC  + 10?7, IVC  + 10?9, IVC  + 10?11) were evaluated on in vitro bovine embryonic development. The optimal concentration of melatonin (10?9 M) from Experiments 1–2 was tested in both maturation and/or culture media of Experiment 3 (Control, IVM  + 10?9, IVC  + 10?9, IVM /IVC  + 10?9). In Experiment 1, maturated oocytes from Control and IVM  + 10?9 treatments showed increased glutathione content, mitochondrial membrane potential and percentage of Grade I blastocysts (40.6% and 43%, respectively). In Experiment 2, an increase in the percentage of Grade I blastocysts was detected in IVC  + 10?7 (43.5%; 56.7%) and IVC  + 10?9 (47.4%; 57.4%). Moreover, a lower number and percentage of apoptotic cells in blastocysts were observed in the IVC  + 10?9 group compared to Control (3.8 ± 0.6; 3.6% versus 6.1 ± 0.6; 5.3%). In Experiment 3, the IVC  + 10?9 treatment increased percentage of Grade I blastocysts with a lower number of apoptotic cells compared to IVM /IVC  + 10?9 group (52.6%; 3.0 ± 0.5 versus 46.0%; 5.4 ± 1.0). The IVC  + 10?9 treatment also had a higher mRNA expression of antioxidant gene (SOD 2) compared to the Control, as well as the heat shock protein (HSPB 1) compared to the IVM  + 10?9. Reactive oxygen species production was greater in the IVM /IVC  + 10?9 treatment group. In conclusion, the 10?9 M concentration of melatonin and the in vitro production phase in which it is used directly affected embryonic development and quality.  相似文献   
7.
In silvopastoral (SP) systems, forage responses depend on the microenvironment in which the plants develop. Our objective was to evaluate canopy and tillering characteristics of shaded 'Marandu' palisadegrass [Brachiaria brizantha (Hochst A Rich) Stapf, syn. Urochloa brizantha] under continuous stocking in a SP system. Treatments were one full sun (FS) and three shaded systems (silvopasture, SP) corresponding to distances from tree groves: 7.5 m north (SP1), and 15 m (SP2) and 7.5 m south (SP3) studied during two rainy seasons (Year 1 and Year 2). The tree in the SP system was Eucalyptus urograndis (hybrid of Eucalyptus grandis W. Hill ex Maiden × Eucalyptus urophylla S. T. Blake). The photosynthetic active radiation was greater in FS (923 μmol m-2 s-1), followed by SP2 (811 μmol m-2 s-1), SP1 (727 μmol m-2 s-1) and SP3 (673 μmol m-2 s-1). Forage accumulation in FS was 15% greater than the mean of SP1, SP2 and SP3 (10,663 kg DM/ha). There was no difference in net accumulation of leaf, stem and dead material, averaging 3,302, 3,420 and 4,063 kg DM/ha respectively. Leaf accumulation and accumulation rate were greater in Year 2, and leaf accumulation rate was similar among treatments (19 kg DM ha−1 day−1). Leaf proportion increased 14% from Year 1 to Year 2. Specific leaf area was greater for treatments SP1 and SP3 (193 cm2/g). Tiller population density was similar across treatments in Year 1. Shaded palisadegrass maintains leaf productivity similar to FS under continuous stocking in an SP system.  相似文献   
8.
Target spot of soybean has spread in Brazil, the southeastern United States and Argentina in the last decade. A collaborative network of field Uniform Fungicide Trials (UFT) in Brazil was created in 2011 to study the target spot control efficacy of fungicides, including azoxystrobin + benzovindiflupyr (AZ_BF), carbendazim (CZM), fluxapyroxad + pyraclostrobin (FLUX_PYRA), epoxiconazole + FLUX_PYRA (EPO_FLUX_PYRA), mancozeb (MZB) and prothioconazole + trifloxystrobin (PROT_TRIF). Network meta-analysis was used to conduct a quantitative synthesis of UFT data collected from 2012 to 2016 and to evaluate the effects of disease pressure (DP, low ≤ 35% target spot severity in the nontreated control < high) and year of experiment on the overall mean efficacy and yield response to each of the tested fungicides. Based on mean percentage control of target spot severity, the tested fungicides fall into three efficacy groups (EG): high EG, FLUX_PYRA (76.2% control relative to the nontreated control) and EPO_FLUX_PYRA (75.7% control); intermediate EG, PROT_TRIF (66.5% control) and low EG, MZB (49.6% control), AZ_BF (46.7% control) and CZM (32.4% control). DP had a significant effect on yield response. At DPLow, the highest response was due to PROT_TRIF (+342 kg ha−1, +12.8%) and EPO_FLUX_PYRA (+295.5 kg ha−1, +11.2%), whereas at DPHigh, EPO_FLUX_PYRA and FLUX_PYRA outperformed the other treatments, with yield responses of 503 kg ha−1 (+20.2%) and 469 kg ha−1 (+19.1%), respectively. The probability of a positive return on fungicide investment ranged from 0.26 to 0.56 at DPLow and from 0.34 to 0.66 at DPHigh.  相似文献   
9.
Under tropical meteorological conditions, the volume of soil explored by plant roots is crucial for crop growth as it allows increased water and nutrient use efficiency. We hypothesized that, under different irrigation intervals, leguminous mulch can extend the duration between irrigation events but maintain crop performance, because decreased evaporative fluxes also reduce constraints to root exploration imposed by mechanical stress. We evaluated the combined effects of leguminous mulch and irrigation intervals on soil physical properties to determine whether the growth and productivity of maize were modified in a structurally fragile tropical soil. The experiment involved the following treatments: 4‐day irrigation intervals with soil mulched (4C) or bare (4S), 6‐day irrigation intervals with soil mulched (6C) or bare (6S), 8‐day irrigation intervals with soil mulched (8C) or bare (8S) and 10‐day irrigation intervals with soil mulched (10C) or bare (10S). Mulch decreased soil penetration resistance and increased to 4 days the favourable time for root development in drying soil. Relative to bare soil, mulch with a 6‐day irrigation interval almost doubled nitrogen uptake post‐tasselling, which decreased nitrogen remobilization and increased the crop growth rate during this stage. These conditions had a positive effect on the transpiration rate and stomatal conductance as well as on the growth and yield of maize. A 6‐day irrigation interval with mulch compared to 4 days with bare soil resulted in similar conditions for root development, but greater uptake of nitrogen (102.73–78.70 kg/ha) and better yield (6.2–5.3 t/ha), which means greater efficiency in nitrogen and water use.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号