首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1435篇
  免费   166篇
林业   112篇
农学   69篇
基础科学   13篇
  256篇
综合类   44篇
农作物   102篇
水产渔业   191篇
畜牧兽医   652篇
园艺   35篇
植物保护   127篇
  2023年   24篇
  2022年   32篇
  2021年   73篇
  2020年   94篇
  2019年   114篇
  2018年   117篇
  2017年   91篇
  2016年   116篇
  2015年   54篇
  2014年   82篇
  2013年   83篇
  2012年   113篇
  2011年   98篇
  2010年   55篇
  2009年   59篇
  2008年   62篇
  2007年   57篇
  2006年   53篇
  2005年   27篇
  2004年   35篇
  2003年   29篇
  2002年   23篇
  2001年   19篇
  2000年   19篇
  1999年   13篇
  1998年   9篇
  1997年   5篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1976年   3篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1970年   1篇
  1969年   1篇
  1967年   2篇
排序方式: 共有1601条查询结果,搜索用时 744 毫秒
1.
Environmental conditions influence phenology and physiological processes of plants. It is common for maize and sorghum to be sown at two different periods: the first cropping (spring/summer) and the second cropping (autumn/winter). The phenological cycle of these crops varies greatly according to the planting season, and it is necessary to characterize the growth and development to facilitate the selection of the species best adapted to the environment. The aim of this study was to characterize phenological phases and physiological parameters in sorghum and maize plants as a function of environmental conditions from the first cropping and second cropping periods. Two parallel experiments were conducted with both crops. The phenological characterization was based on growth analyses (plant height, leaf area and photoassimilate partitioning) and gas exchange evaluations (net assimilation rate, stomatal conductance, transpiration and water-use efficiency). It was found that the vegetative stage (VS) for sorghum and maize plants was 7 and 21 days, respectively, longer when cultivated during the second cropping. In the first cropping, the plants were taller than in the second cropping, regardless of the crop. The stomatal conductance of sorghum plants fluctuated in the second cropping during the development period, while maize plants showed decreasing linear behaviour. Water-use efficiency in sorghum plants was higher during the second cropping compared with the first cropping. In maize plants, in the second cropping, the water-use efficiency showed a slight variation in relation to the first cropping. It was concluded that the environmental conditions as degree-days, temperature, photoperiod and pluvial precipitation influence the phenology and physiology of both crops during the first and the second cropping periods, specifically cycle duration, plant height, leaf area, net assimilation rate, stomatal conductance and water-use efficiency, indicating that both crops respond differentially to environmental changes during the growing season.  相似文献   
2.
3.
4.
In this study, we evaluated the effects of including cassava wastewater in the diet on the feeding behavior of feedlot lambs in 35 male uncastrated Santa Inês × Dorper crossbred lambs at an approximate age of 3 months, with an average live weight of 20.0?±?3.4 kg. Diets were formulated with hay of cassava shoots (roughage) and a concentrate based on corn and soybean, with a roughage:concentrate ratio of 50:50, plus inclusion of cassava wastewater at the levels of 0, 12, 24, 36, or 48 g/kg of the total diet. Feeding behavior was evaluated between the 46th and 52nd days of the experiment. Increasing cassava wastewater levels in the diet reduced (P?<?0.05) the intakes (kg/day) of dry matter and neutral detergent fiber as well as the efficiency of rumination (g/cud and g/h) of dry matter and neutral detergent fiber. The other behavioral parameters were not affected by wastewater inclusion in the diet. Therefore, the inclusion of up to 48 g/kg of cassava wastewater on fresh matter of diets is not recommended for feedlot lambs.  相似文献   
5.
Cooling stored epididymal samples for several days allows facilities to transport and process genetic material post‐mortem. Improvements to this practice allow the preservation of sperm from domestic cats, which are the ideal study model for wild felids. However, the modifications in spermatic features and the oxidative profile are not fully understood in cats. This information is necessary for the development of biotechniques, such as new extenders for cryopreservation. Therefore, the purpose of this study was to evaluate the spermatic and oxidative profile in samples from the epididymal cauda of domestic cats cooled at 5°C for 24, 48 and 72 hr. Spermatozoa were collected from the epididymis cauda. Evaluations consisted of computer‐assisted sperm analysis (CASA), plasma membrane integrity (eosin/nigrosin), acrosome integrity (fast green/rose bengal), sperm morphology, sperm DNA integrity (toluidine blue), mitochondrial activity (3′3 diaminobenzidine), activity of the antioxidant enzymes glutathione peroxidase (GPx) and superoxide dismutase (SOD), measurement of lipid peroxidation (TBARS) and protein oxidation. A decrease in sperm motility parameters was observed after 72 hr of cooling (i.e. total and progressive) with a higher percentage of minor (37.7 ± 6.3%) and total defects (53.4 ± 6.3%). Additionally, a decrease in high mitochondrial activity (Class I: 16.6 ± 2.2%) occurred after 72 hr. The decrease in motility rates after a long cooling time probably was caused by the increase in sperm abnormalities. A long cooling time causes cold shock and mitochondrial exhaustion, but there was no observed change with the oxidative stress condition. Therefore, cat epididymal sperm stored at 5°C appear to maintain a high quality for up to 48 hr of cooling time.  相似文献   
6.
Sperm DNA fragmentation is a condition that interferes directly in the reproductive efficiency. Currently, there are several methods for assessing the sperm DNA integrity, such as Alkaline Comet, TUNEL and Sperm Chromatin Structure Assay. However, many of these techniques are laborious and require high‐precision equipment. Thus, the development of new techniques can optimize the evaluation of sperm DNA damage. Therefore, the aim of this study was to standardize the toluidine blue (TB) stain technique for the analysis of DNA fragmentation of dog, cat, bull, stallion and ram spermatozoa. For this purpose, we used six animals of each specie (n = 30), in reproductive age. Sperm was collected by different methods according to the particularities of each species, and such samples were divided into two aliquots: a sperm sample was kept at 5°C (considered as intact sperm DNA), and the remaining samples were submitted to the induction of DNA fragmentation by exposure to ultraviolet light for 4 hr. Samples were then mixed with the intact sample to obtain known and progressive proportions of sperm with fragmented DNA (0%, 25%, 50%, 75% and 100%). Semen smears were performed and subjected to staining with TB. Blue‐stained spermatozoa were considered to have DNA fragmentation. We observed high linear regression coefficients between the expected proportion of damaged DNA and the results of TB for dog, cat, ram, bull and stallion samples. In conclusion, TB stain was considered a fast and effective technique for the study of spermatozoa DNA in several species.  相似文献   
7.
Effects of adding different concentrations of melatonin (10?7, 10?9 and 10?11 M) to maturation (Experiment 1; Control, IVM  + 10?7, IVM  + 10?9, IVM  + 10?11) and culture media (Experiment 2; Control, IVC  + 10?7, IVC  + 10?9, IVC  + 10?11) were evaluated on in vitro bovine embryonic development. The optimal concentration of melatonin (10?9 M) from Experiments 1–2 was tested in both maturation and/or culture media of Experiment 3 (Control, IVM  + 10?9, IVC  + 10?9, IVM /IVC  + 10?9). In Experiment 1, maturated oocytes from Control and IVM  + 10?9 treatments showed increased glutathione content, mitochondrial membrane potential and percentage of Grade I blastocysts (40.6% and 43%, respectively). In Experiment 2, an increase in the percentage of Grade I blastocysts was detected in IVC  + 10?7 (43.5%; 56.7%) and IVC  + 10?9 (47.4%; 57.4%). Moreover, a lower number and percentage of apoptotic cells in blastocysts were observed in the IVC  + 10?9 group compared to Control (3.8 ± 0.6; 3.6% versus 6.1 ± 0.6; 5.3%). In Experiment 3, the IVC  + 10?9 treatment increased percentage of Grade I blastocysts with a lower number of apoptotic cells compared to IVM /IVC  + 10?9 group (52.6%; 3.0 ± 0.5 versus 46.0%; 5.4 ± 1.0). The IVC  + 10?9 treatment also had a higher mRNA expression of antioxidant gene (SOD 2) compared to the Control, as well as the heat shock protein (HSPB 1) compared to the IVM  + 10?9. Reactive oxygen species production was greater in the IVM /IVC  + 10?9 treatment group. In conclusion, the 10?9 M concentration of melatonin and the in vitro production phase in which it is used directly affected embryonic development and quality.  相似文献   
8.
In silvopastoral (SP) systems, forage responses depend on the microenvironment in which the plants develop. Our objective was to evaluate canopy and tillering characteristics of shaded 'Marandu' palisadegrass [Brachiaria brizantha (Hochst A Rich) Stapf, syn. Urochloa brizantha] under continuous stocking in a SP system. Treatments were one full sun (FS) and three shaded systems (silvopasture, SP) corresponding to distances from tree groves: 7.5 m north (SP1), and 15 m (SP2) and 7.5 m south (SP3) studied during two rainy seasons (Year 1 and Year 2). The tree in the SP system was Eucalyptus urograndis (hybrid of Eucalyptus grandis W. Hill ex Maiden × Eucalyptus urophylla S. T. Blake). The photosynthetic active radiation was greater in FS (923 μmol m-2 s-1), followed by SP2 (811 μmol m-2 s-1), SP1 (727 μmol m-2 s-1) and SP3 (673 μmol m-2 s-1). Forage accumulation in FS was 15% greater than the mean of SP1, SP2 and SP3 (10,663 kg DM/ha). There was no difference in net accumulation of leaf, stem and dead material, averaging 3,302, 3,420 and 4,063 kg DM/ha respectively. Leaf accumulation and accumulation rate were greater in Year 2, and leaf accumulation rate was similar among treatments (19 kg DM ha−1 day−1). Leaf proportion increased 14% from Year 1 to Year 2. Specific leaf area was greater for treatments SP1 and SP3 (193 cm2/g). Tiller population density was similar across treatments in Year 1. Shaded palisadegrass maintains leaf productivity similar to FS under continuous stocking in an SP system.  相似文献   
9.
10.
The addition of protein supplementation in a silvopastoral system can contribute to improved forage intake and digestibility. Our objective was to evaluate in vitro ruminal parameters, digestibility and gas production of Marandu palisadegrass [Urochloa brizantha (Hochst. ex A. Rich.) R. D. Webster] in a silvopastoral system and compare this to parameters obtained from diets with protein supplementation. Forage was sampled during the growing season (November to April) in 2016/17 and 2017/18. In vitro incubation treatments consisted of four levels of protein supplement (20% of crude protein; CP) in the diet (0.1, 0.2, 0.3 and 0.4 g/kg of body weight). The neutral detergent fibre, acid detergent fibre and indigestible neutral detergent fibre concentrations were highest in the first year. In the second year, CP concentration was 21% greater than in the first year. There was a linear increase for digestion rate, a quadratic effect for lag time and a linear decrease for average digestion time as supplementation levels were increased. The least lag time and digestion time occurred in the second year. There was no supplementation effect on ruminal pH, acetate and butyrate concentrations. Second-year in vitro dry matter digestibility (IVDMD) was greater than in the first year. Increases in supplementation levels linearly enhanced IVDMD and reduced methane (CH4) production. The inclusion of a protein supplement contributed to reduced CH4 and increased volatile fatty acids production; therefore, we recommended the supplement inclusion of >0.28 g/kg of BW for animals grazing in well-managed palisadegrass pastures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号