首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   11篇
  2篇
综合类   6篇
水产渔业   1篇
畜牧兽医   67篇
  2023年   2篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   5篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2011年   1篇
  2010年   4篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  2003年   5篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1998年   4篇
  1997年   7篇
  1996年   2篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
排序方式: 共有76条查询结果,搜索用时 16 毫秒
1.
2.
Biological activity of immunostimulatory CpG DNA motifs in domestic animals   总被引:15,自引:0,他引:15  
Bacterial DNA contains a much higher frequency of CpG dinucleotides than are present in mammalian DNA. Furthermore, bacterial CpG dinucleotides are often not methylated. It is thought that these two features in combination with specific flanking bases constitute a CpG motif that is recognized as a "danger" signal by the innate immune system of mammals and therefore an immune response is induced when these motifs are encountered. These immunostimulatory activities of bacterial CpG DNA can also be achieved with synthetic CpG oligodeoxynucleotides (ODN). Recognition of CpG motifs by the innate immune system requires engagement of Toll-like receptor 9 (TLR-9), which induces cell signaling and subsequently triggers a pro-inflammatory cytokine response and a predominantly Th1-type immune response. CpG ODN-induced innate and adaptive immune responses can result in protection in various mouse models of disease. Based on these observations, clinical trials are currently underway in humans to evaluate CpG ODN therapies for cancer, allergy and infectious disease. However, potential applications for immunostimulatory CpG ODN in species of veterinary importance are just being explored. In this review, we will highlight what is presently known about the immunostimulatory effects of CpG ODN in domestic animals.  相似文献   
3.
This study was carried out to identify immunoreactive polypeptides in Babesia equi merozoite antigen. Three fractions of killed B. equi merozoite antigen viz.; whole merozoite (WM), cell membrane (CM) and high speed supernatant (HSS) antigens were prepared from the parasite infected erythrocytes. These antigenic preparations along with ghost antigen from non-infected erythrocytes were fractionated on 12% sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotted with sera showing high antibody titres. On SDS-PAGE, 16 polypeptides with molecular weight (Mr) in the range of 112-17kDa were obtained from the WM and CM antigens. But only six polypeptides were detected (96.5-28kDa) in the HSS antigen. On immunoblotting with high titred serum collected from donkeys following two immunizations with a killed B. equi merozoite immunogen, 11 polypeptides were observed in the WM and CM antigens (Mr 112-18kDa). Of these, four polypeptides (Mr 112, 45, 33 and 18kDa) were identified as most immunoreactive. Besides these, a 28kDa was observed as strong immunoreactive protein in WM and CM antigens. The HSS antigen showed only six polypeptides and one peptide (28kDa) was identified as immunoreactive. When high titred serum collected from immunized donkeys following challenge with B. equi infected blood and was used for immunoblotting, the protein profile of WM and CM antigens remained the same. However, three additional polypeptides (Mr 81, 54.5 and 39kDa) were detected in HSS antigen.  相似文献   
4.
5.
The objective of this study was to explore the possibility of producing wild buffalo embryos by interspecies somatic cell nuclear transfer (iSCNT) through handmade cloning using wild buffalo somatic cells and domestic buffalo (Bubalus bubalis) oocytes. Somatic cells derived from the ear skin of wild buffalo were found to express vimentin but not keratin and cytokeratin‐18, indicating that they were of fibroblast origin. The population doubling time of skin fibroblasts from wild buffalo was significantly (p < 0.05) higher, and the cell proliferation rate was significantly (p < 0.05) lower compared with that of skin fibroblasts from domestic buffalo. Neither the cleavage (92.6 ± 2.0% vs 92.8 ± 2.0%) nor the blastocyst rate (42.4 ± 2.4% vs 38.7 ± 2.8%) was significantly different between the intraspecies cloned embryos produced using skin fibroblasts from domestic buffalo and interspecies cloned embryos produced using skin fibroblasts from wild buffalo. However, the total cell number (TCN) was significantly (p < 0.05) lower (192.0 ± 25.6 vs 345.7 ± 42.2), and the apoptotic index was significantly (p < 0.05) higher (15.1 ± 3.1 vs 8.0 ± 1.4) for interspecies than that for intraspecies cloned embryos. Following vitrification in open‐pulled straws (OPS) and warming, although the cryosurvival rate of both types of cloned embryos, as indicated by their re‐expansion rate, was not significantly different (34.8 ± 1.5% vs 47.8 ± 7.8), the apoptotic index was significantly (p < 0.05) higher for vitrified–warmed interspecies than that for corresponding intraspecies cloned embryos (48.9 ± 7.2 vs 23.9 ± 2.8). The global level of H3K18ac was significantly (p < 0.05) lower in interspecies cloned embryos than that in intraspecies cloned embryos. The expression level of HDAC1, DNMT3a and CASPASE3 was significantly (p < 0.05) higher, that of P53 was significantly (p < 0.05) lower in interspecies than in intraspecies embryos, whereas that of DNMT1 was similar between the two types of embryos. In conclusion, these results demonstrate that wild buffalo embryos can be produced by iSCNT.  相似文献   
6.
7.
Femtosecond laser pulses and coherent two-phonon Raman scattering were used to excite KTaO3 into a squeezed state, nearly periodic in time, in which the variance of the atomic displacements dips below the standard quantum limit for half of a cycle. This nonclassical state involves a continuum of transverse acoustic modes that leads to oscillations in the refractive index associated with the frequency of a van Hove singularity in the phonon density of states.  相似文献   
8.
Conversion of methane to higher hydrocarbons by its low-temperature activation without forming undesirable carbon oxides is of great scientific and practical importance. Methane can be highly activated, yielding high rates of conversion to higher hydrocarbons and aromatics (10 to 45 percent) at low temperatures (400° to 600°C), by its reaction over H-galloaluminosilicate ZSM-5 type (MFI) zeolite in the presence of alkenes or higher alkanes. The methane activation results from its hydrogen-transfer reaction with alkenes.  相似文献   
9.
10.
Non-methylated CpG motifs, present in viral and bacterial DNA, are one of many pathogen-associated molecular patterns (PAMP) recognized by the mammalian innate immune system. Recognition of this PAMP occurs through a specific interaction with toll-like receptor 9 (TLR9) and this interaction can induce cytokine responses that influence both innate and adaptive immune responses. Previous investigations determined that both the flanking sequences in synthetic CpG oligodeoxynucleotides (CpG ODN) and the cellular pattern of TLR9 expression can influence species-specific responses to CpG ODN. Therefore, the structure, function and cellular distribution of bovine TLR9 were compared with what is known for mice and human. Analysis of the bovine TLR9 gene revealed greater sequence homology between cattle and humans than cattle and mice Similar CpG motifs induced optimal activation of both human and bovine leukocytes and these motifs were distinct from those which activated mouse leukocytes. Functional analyses with CpG ODN stimulated bovine blood leukocytes revealed that class A CpG ODN were more potent inducers of interferon-alpha (IFN-alpha) than class B CpG ODN. Furthermore, magnetic activated cell sorting of bovine blood leukocyte subpopulations implicated dendritic cells but not monocytes in the regulation of CpG ODN-induced IFN secretion. Thus, the cellular pattern of CpG ODN-induced responses in cattle shared many similarities with human leukocytes. Collectively, these analyses revealed substantial conservation of TLR9 structure and TLR9 function in blood leukocytes of humans, cattle and other domestic species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号