首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   5篇
水产渔业   7篇
畜牧兽医   32篇
植物保护   1篇
  2023年   2篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   4篇
  2017年   2篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2011年   3篇
  2010年   1篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  1998年   1篇
  1983年   1篇
排序方式: 共有40条查询结果,搜索用时 375 毫秒
1.
2.
3.
In porcine oocytes, the function of the zona pellucida (ZP) with regard to sperm penetration or prevention of polyspermy is not well understood. In the present study, we investigated the effects of the ZP on sperm penetration during in vitro fertilization (IVF). We collected in vitro-matured oocytes with a first polar body (ZP+ oocytes). Some of them were freed from the ZP (ZP− oocytes) by two treatments (pronase and mechanical pipetting), and the effects of these treatments on sperm penetration parameters (sperm penetration rate and numbers of penetrated sperm per oocyte) were evaluated. There was no evident difference in the parameters between the two groups. Secondly, we compared the sperm penetration parameters of ZP+ and ZP− oocytes using frozen-thawed epididymal spermatozoa from four boars. Sperm penetration into ZP+ oocytes was found to be accelerated relative to ZP− oocytes. Thirdly, we evaluated the sperm penetration of ZP+ and ZP− oocytes at 1−10 h after IVF (3 h gamete co-incubation). The proportions of oocytes penetrated by sperm increased significantly with time in both groups; however, the number of penetrated sperm per oocyte did not increase in ZP− oocytes. Finally, we performed IVF using ZP− oocytes divided into control (3 h) and prolonged gamete co-incubation (5 h) groups. Greater numbers of sperm penetrated in the 5 h group than in the control group. These results suggest that the ZP and oolemma are not competent factors for prevention of polyspermy in our present porcine IVF system. However, it appears that ZP removal is one of the possibilities for reducing polyspermic penetration in vitro in pigs.  相似文献   
4.
This study was conducted to investigate the effect of seven concentrations of Cas9 protein (0, 25, 50, 100, 200, 500, and 1,000 ng/µl) on the development and gene editing of porcine embryos. This included the target editing and off‐target effect of embryos developed from zygotes that were edited via electroporation of the Cas9 protein with guide RNA targeting Myostatin genes. We found that the development to blastocysts of electroporated zygotes was not affected by the concentration of Cas9 protein. Although the editing rate, which was defined as the ratio of edited blastocysts to total examined blastocysts, did not differ with Cas9 protein concentration, the editing efficiency, which was defined as the frequency of indel mutations in each edited blastocyst, was significantly decreased in the edited blastocysts from zygotes electroporated with 25 ng/µl of Cas9 protein compared with that of blastocysts from zygotes electroporated with higher Cas9 protein concentrations. Moreover the frequency of indel events at the two possible off‐target sites was not significantly different with different concentrations of Cas9 protein. These results indicate that the concentration of Cas9 protein affects gene editing efficiency in embryos but not the embryonic development, gene editing rate, and non‐specific cleavage of off‐target sites.  相似文献   
5.
Recently, we established the GEEP (“gene editing by electroporation of Cas9 protein”) method, in which the CRISPR/Cas9 system, consisting of a Cas9 protein and single guide RNA (sgRNA), is introduced into pig zygotes by electroporation and thus induces highly efficient targeted gene disruption. In this study, we examined the effects of sgRNA on the blastocyst formation of porcine embryos and evaluated their genome‐editing efficiency. To produce an animal model for diabetes, we targeted PDX‐1 (pancreas duodenum homeobox 1), a gene that is crucial for pancreas development during the fetal period and whose monoallelic disruption impairs insulin secretion. First, Cas9 protein with different sgRNAs that targeted distinct sites in the PDX‐1 exon 1 was introduced into in vitro‐fertilized zygotes by the GEEP method. Of the six sgRNAs tested, three sgRNAs (sgRNA1, 2, and 3) successfully modified PDX‐1 gene. The blastocyst formation rate of zygotes edited with sgRNA3 was significantly (< 0.05) lower than that of control zygotes without the electroporation treatment. Our study indicates that the GEEP method can be successfully used to generate PDX‐1 mutant blastocysts, but the development and the efficiency of editing the genome of zygotes may be affected by the sgRNA used for CRISPR/Cas9 system.  相似文献   
6.
The aim of this study was to investigate the ovarian follicular development, developmental competence of oocytes, and plasma anti‐Müllerian hormone (AMH) levels of Japanese wild boar crossbred (wild hybrid) gilts, whose litter size is inferior to that of European breeds. Ovary and plasma samples were collected from two different breeds of gilts (wild hybrid and Large White breeds). The ovaries from the wild hybrid gilts had a lower average numbers of secondary follicles and vesicular follicles in ovarian cross‐sections and of good quality oocytes collected from ovarian follicles as compared with those from Large White gilts (< 0.05). The development rate to the blastocyst stage of good quality oocytes after in vitro maturation, fertilization and culture was also lower (< 0.05) in wild hybrid gilts than in Large White gilts. Plasma AMH levels with >0.16 ng/ml were detected in 8.3% of the examined wild hybrid gilts and 33% of the Large White gilts. These results indicate that the low reproductive performance of wild hybrid breed may result in part from low numbers of vesicular follicles and good quality oocytes, and low developmental competence of oocytes. Moreover, plasma AMH levels may support low number of vesicular follicles in ovaries of wild hybrid gilts.  相似文献   
7.
Chlorogenic acid (CGA) is known to protect oocytes from oxidative stress. Here we investigated the effects of CGA on porcine oocyte maturation under heat stress and subsequent embryonic development after parthenogenetic activation. For in vitro maturation (IVM) at 41.0°C (hyperthermic condition), supplementation of the maturation medium with 50 μM CGA significantly improved the percentage of matured oocytes and reduced the rate of apoptosis relative to oocytes matured without CGA (p < .05). CGA treatment of oocytes during IVM under hyperthermia tended to increase (p < .1) percentage of blastocyst formation after parthenogenesis and significantly increased (p < .05) the total cell number per blastocyst relative to oocytes matured without CGA. For IVM at 38.5°C (isothermic condition), CGA significantly improved the rate of blastocyst development compared with oocytes matured without CGA (p < .05), but did not affect oocyte maturation, apoptosis rate or the number of cells per embryo. Omission of all antioxidants from the IVM medium significantly reduced the rate of oocyte maturation, but the rate was restored upon addition of CGA. These results demonstrate that CGA is a potent antioxidant that protects porcine oocytes from the negative effects of heat stress, thus reducing the frequency of apoptosis and improving the quality of embryos.  相似文献   
8.
9.
This study aimed to investigate the efficiency of KRAS gene editing via CRISPR/Cas9 delivery by electroporation and analyzed the effects of the non-homologous end-joining pathway inhibitor Scr7 and single-stranded oligodeoxynucleotide (ssODN) homology arm length on introducing a point mutation in KRAS. Various concentrations (0–2 µM) of Scr7 were evaluated; all concentrations of Scr7 including 0 µM resulted in the generation of blastocysts with a point mutation and the wild-type sequence or indels. No significant differences in the blastocyst formation rates of electroporated zygotes were observed among ssODN homology arm lengths, irrespective of the gRNA (gRNA1 and gRNA2). The proportion of blastocysts carrying a point mutation with or without the wild-type sequence and indels was significantly higher in the ssODN20 group (i.e., the group with a ssODN homology arm of 20 bp) than in the ssODN60 group (gRNA1: 25.7% vs. 5.4% and gRNA2: 45.5% vs. 5.9%, p < .05). In conclusion, the CRISPR/Cas9 delivery with ssODN via electroporation is feasible for the generation of point mutations in porcine embryos. Further studies are required to improve the efficiency and accuracy of the homology-directed repair.  相似文献   
10.
In Mongolia, yak (Bos grunniens) are able to live in alpine areas and their products greatly influence the lives of the local people. Increased vigour in hybridized yak and cattle can offer benefits for livestock farmers. However, male hybrids show reproductive defects resulting from spermatogenesis arrest, affecting the conservation and maintenance of dominant traits in the next generation. The underlying mechanisms involved in hybrid cattle–yak infertility have recently been investigated; however, the genetic cause is still unclear. Androgens and androgen receptor (AR) signalling are required for spermatogenesis. We, therefore, evaluated the expression of AR, 3β-hydroxysteroid dehydrogenase (3βHSD) and 5α-reductase 2 (SRD5A2) in Leydig cells to investigate their function in cattle–yak spermatogenesis. Testicular tissues from yaks (1–3 years old) and hybrids (F1–F3, 2 years old) were collected and subjected to immunohistochemistry and image analyses to investigate the expression of each parameter in the Leydig cells. After maturation at 2 years, the expression levels of AR increased and the levels of 3βHSD decreased, but the SRD5A2 levels remained constant in yak. However, the cattle–yak hybrid F2 showed immature testicular development and significantly different expression levels of AR and 3βHSD compared with mature yak. These results suggest that the decreased expression of AR and increased expression of 3βHSD in the Leydig cells of cattle–yak hybrid testes may represent one of the causes of infertility. Our study might help in solving the problem of infertility in crossbreeding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号