首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   744篇
  免费   64篇
林业   50篇
农学   31篇
基础科学   1篇
  134篇
综合类   31篇
农作物   55篇
水产渔业   95篇
畜牧兽医   319篇
园艺   15篇
植物保护   77篇
  2023年   21篇
  2022年   23篇
  2021年   56篇
  2020年   58篇
  2019年   69篇
  2018年   53篇
  2017年   48篇
  2016年   43篇
  2015年   25篇
  2014年   42篇
  2013年   47篇
  2012年   63篇
  2011年   46篇
  2010年   18篇
  2009年   23篇
  2008年   27篇
  2007年   25篇
  2006年   17篇
  2005年   11篇
  2004年   17篇
  2003年   14篇
  2002年   13篇
  2001年   5篇
  2000年   5篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   4篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1974年   2篇
  1971年   1篇
  1970年   1篇
  1967年   2篇
  1960年   1篇
  1956年   1篇
排序方式: 共有808条查询结果,搜索用时 78 毫秒
1.
Environmental conditions influence phenology and physiological processes of plants. It is common for maize and sorghum to be sown at two different periods: the first cropping (spring/summer) and the second cropping (autumn/winter). The phenological cycle of these crops varies greatly according to the planting season, and it is necessary to characterize the growth and development to facilitate the selection of the species best adapted to the environment. The aim of this study was to characterize phenological phases and physiological parameters in sorghum and maize plants as a function of environmental conditions from the first cropping and second cropping periods. Two parallel experiments were conducted with both crops. The phenological characterization was based on growth analyses (plant height, leaf area and photoassimilate partitioning) and gas exchange evaluations (net assimilation rate, stomatal conductance, transpiration and water-use efficiency). It was found that the vegetative stage (VS) for sorghum and maize plants was 7 and 21 days, respectively, longer when cultivated during the second cropping. In the first cropping, the plants were taller than in the second cropping, regardless of the crop. The stomatal conductance of sorghum plants fluctuated in the second cropping during the development period, while maize plants showed decreasing linear behaviour. Water-use efficiency in sorghum plants was higher during the second cropping compared with the first cropping. In maize plants, in the second cropping, the water-use efficiency showed a slight variation in relation to the first cropping. It was concluded that the environmental conditions as degree-days, temperature, photoperiod and pluvial precipitation influence the phenology and physiology of both crops during the first and the second cropping periods, specifically cycle duration, plant height, leaf area, net assimilation rate, stomatal conductance and water-use efficiency, indicating that both crops respond differentially to environmental changes during the growing season.  相似文献   
2.
A hemolytic assay was developed for the measurement of functional equine complement activity. The assay utilizes antibody sensitized chicken erythrocytes as the target cell and was specific for classical pathway (antibody dependent) complement activity. The assay was found to be reproducible and more sensitive than previous reports using other species of target cells. Total serum complement (CH50) values were determined for five mares and their foals and followed over a period of 3 months.  相似文献   
3.
4.
In this study, we evaluated the effects of including cassava wastewater in the diet on the feeding behavior of feedlot lambs in 35 male uncastrated Santa Inês × Dorper crossbred lambs at an approximate age of 3 months, with an average live weight of 20.0?±?3.4 kg. Diets were formulated with hay of cassava shoots (roughage) and a concentrate based on corn and soybean, with a roughage:concentrate ratio of 50:50, plus inclusion of cassava wastewater at the levels of 0, 12, 24, 36, or 48 g/kg of the total diet. Feeding behavior was evaluated between the 46th and 52nd days of the experiment. Increasing cassava wastewater levels in the diet reduced (P?<?0.05) the intakes (kg/day) of dry matter and neutral detergent fiber as well as the efficiency of rumination (g/cud and g/h) of dry matter and neutral detergent fiber. The other behavioral parameters were not affected by wastewater inclusion in the diet. Therefore, the inclusion of up to 48 g/kg of cassava wastewater on fresh matter of diets is not recommended for feedlot lambs.  相似文献   
5.
6.
7.
8.
The addition of protein supplementation in a silvopastoral system can contribute to improved forage intake and digestibility. Our objective was to evaluate in vitro ruminal parameters, digestibility and gas production of Marandu palisadegrass [Urochloa brizantha (Hochst. ex A. Rich.) R. D. Webster] in a silvopastoral system and compare this to parameters obtained from diets with protein supplementation. Forage was sampled during the growing season (November to April) in 2016/17 and 2017/18. In vitro incubation treatments consisted of four levels of protein supplement (20% of crude protein; CP) in the diet (0.1, 0.2, 0.3 and 0.4 g/kg of body weight). The neutral detergent fibre, acid detergent fibre and indigestible neutral detergent fibre concentrations were highest in the first year. In the second year, CP concentration was 21% greater than in the first year. There was a linear increase for digestion rate, a quadratic effect for lag time and a linear decrease for average digestion time as supplementation levels were increased. The least lag time and digestion time occurred in the second year. There was no supplementation effect on ruminal pH, acetate and butyrate concentrations. Second-year in vitro dry matter digestibility (IVDMD) was greater than in the first year. Increases in supplementation levels linearly enhanced IVDMD and reduced methane (CH4) production. The inclusion of a protein supplement contributed to reduced CH4 and increased volatile fatty acids production; therefore, we recommended the supplement inclusion of >0.28 g/kg of BW for animals grazing in well-managed palisadegrass pastures.  相似文献   
9.
This experiment evaluated the influence of protein supplementation frequency (SF) and amount offered on intake, nutrient digestibility, and ruminal fermentation by rumen-fistulated beef steers consuming low-quality [2.9% crude protein (CP); dry matter (DM) basis], cool-season forage. Seven Angus × Hereford steers (300 ± 27 kg) fitted with ruminal cannulas were randomly assigned to 1 of 7 treatments in an incomplete 7 × 4 Latin square. Treatments, in a 2 × 3 factorial design plus a non-supplemented control (CON), consisted of 2 levels of supplemental soybean meal, 100% (F) or 50% (H) of the estimated rumen-degradable protein requirement, provided daily (D), once every 5 d (5D), or once every 10 d (10D). Experimental periods were 30 d and dry matter intake (DMI) was measured from days 19 to 28. On days 21 (all supplements provided) and 30 (only daily supplements provided; day immediately prior to supplementation for 5D and 10D treatments) ruminal fluid was collected for ruminal pH, ammonia-N (NH3), volatile fatty acids (VFA), and determination of ruminal fermentation variables. Forage and total DM, organic matter (OM), and nitrogen (N) intake increased with supplementation (P ≤ 0.04). However, a linear effect of SF × amount of supplement interaction was observed for forage and total DM, OM, and N intake (P ≤ 0.04), with each variable decreasing as SF decreased, but the decrease being greater with F vs. H. Apparent total tract DM, OM, and neutral detergent fiber digestibility was not affected by supplementation or amount of supplement provided (P ≥ 0.10). In contrast, N digestibility increased with supplementation and for F vs. H (P < 0.01). Digestibility of DM, OM, and N increased linearly as SF decreased (P ≤ 0.03). When all supplements were provided, ruminal NH3, total VFA, and molar proportions of all individual VFA increased with supplementation (P ≤ 0.04), whereas acetate:propionate ratio decreased (P < 0.01). When only daily supplements were provided, none of the aforementioned fermentation parameters were affected (P ≥ 0.09). In summary, reducing the amount of supplemental CP provided to ruminants consuming low-quality forages, when supplementation intervals are >5 d, can be a management tool to maintain acceptable levels of DMI, nutrient digestibility, and ruminal fermentation while reducing supplementation cost.  相似文献   
10.
We evaluated the influence of amount and crude protein (CP) supplementation frequency (SF) on nitrogen (N) use by wethers and the performance of late-gestation beef cows. In exp. 1, seven Western whiteface wethers (31.8 ± 1.4 kg) were used in an incomplete 7 × 4 Latin square to evaluate intake and N use. Wethers received one of the seven treatments in a 2 × 3 factorial design containing two levels of supplemental soybean meal offered at a rate of 100% (F) or 50% (H; 50% of F) of the estimated CP requirement daily, once every 5, or once every 10 d, plus a non-supplemented control (CON). Low-quality cool-season forage (4.9 % CP; dry matter [DM] basis) was provided daily for ad libitum intake. Experimental periods lasted 30 d. In exp. 2, 84 Angus × Hereford cows (560 ± 35 kg) were stratified by age, body condition score (BCS), and expected calving date and allocated to 1 of the 21 feedlot pens (three pens per treatment). Pens were randomly assigned to receive the same treatments as in exp. 1 and cows had free access to low-quality cool-season forage (2.9% CP; DM basis). Cow body weight (BW) and BCS were measured every 14 d until calving and within 24 h after calving. In exp. 1, supplementation did not alter total DM and organic matter (OM) intake (P ≥ 0.26), but both parameters linearly decreased as SF decreased (P = 0.02). Supplementation increased DM, OM, and neutral detergent fiber (NDF) digestibility (P ≤ 0.02). Additionally, F feeding linearly increased DM, OM, and NDF digestibility as SF decreased (P ≤ 0.04). Digestibility of N, N balance, and digested N retained were greater with supplementation (P < 0.01), and N digestibility linearly increased as SF decreased (P = 0.01). Mean plasma urea-N concentration was not only greater (P < 0.01) for supplemented vs. CON wethers but also greater (P = 0.03) for F vs. H. In exp. 2, pre-calving BCS change was greater (P = 0.03) for supplemented cows. A linear effect of SF × supplementation rate for pre-calving BCS change was noted (P = 0.05), as F-supplemented cows lost more BCS compared with H as SF decreased. When considering supplementation intervals greater than 5 d, reducing the quantity of supplement provided, compared with daily supplementation, may be a feasible management strategy to maintain acceptable nutrient use and animal performance while reducing supplement and labor costs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号