首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
  国内免费   2篇
基础科学   2篇
  2篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
排序方式: 共有4条查询结果,搜索用时 93 毫秒
1
1.
环模式成型机压缩水稻秆成型工艺参数优化   总被引:4,自引:3,他引:1  
为了确定环模式成型机压缩水稻秸秆最佳的成型工艺参数,该文以水稻秸秆为原料,利用9JYK-2000A型环模式成型机进行压缩成型,寻求工作参数对环模式成型机压缩水稻秸秆成型影响规律和优化工艺参数组合。采用四因素五水平二次回归正交旋转中心组合设计试验方法,以含水率、成型温度、模辊间隙和主轴转速为影响因子,以成型压块的松弛密度和抗破碎性为评价指标。利用Design-expert8.0.6的回归分析法及响应面分析法,建立并分析了4个因子对评价指标影响的数学模型。结果表明:当参数组合含水率为17.5%~27.1%、成型温度为81.9℃~88.1℃、磨辊间隙为2.49~3.78 mm、主轴转速为157.6~186.5 r/min条件下,成型压块的松弛密度大于1.0 g/cm3,成型压块的抗破碎性大于65%;各因素对松弛密度贡献率的主次关系为:主轴转速>磨辊间隙>含水率>成型温度,各因素对抗破碎性贡献率的主次关系为:含水率>主轴转速>磨辊间隙>成型温度。研究可为环模式成型机压缩水稻秸秆成型提供一定理论依据和技术支撑。  相似文献   
2.
秸秆压块成型是秸秆综合利用重要途径之一,而目前秸秆压块机生产效率低、能耗高、人工成本高,严重影响经济效益。为此,提出了基于PLC控制的秸秆压块机生产线的控制系统设计,构建了秸秆压块机生产线PLC控制系统的硬件系统,并进行软件开发。该控制系统采用了西门子S7-2 0 0系列CPU作为主控单元,通过触摸屏对料仓转速、主轴转速及成型温度等参数进行实时监测与设置,对秸秆压块机喂入量采用PID控制,使秸秆压块机在稳定的工况下生产,有效提高了秸秆压块机生产线的生产率以及压块成型质量。  相似文献   
3.
目前环模压块成型机的环模块温度差过高,成型后受热不均。结合压块成型工作条件,利用ANSYS中的Thermal模块,模拟环模中压块成型温度场,分析环模压块在不同时刻的温度场分布,并对成型装置进行优化设计。结果表明,优化后整体温度趋于平衡,温差明显减小,在加热20 min后,环模块的温度差降为19.25 ℃。优化后环模块成型过程的温度场沿轴向呈先增大,再波动状平稳,最后逐渐减小的趋势,环模块大部分区域的温度变化趋于缓和,环模块成型温度更均匀。   相似文献   
4.
水稻秸秆压块热值模型构建及其影响因子相关性分析   总被引:1,自引:0,他引:1  
为建立水稻秸秆压块热值预测模型和高品质燃料压块挤压成型提供理论依据,该文以9JYK-2000A型环模式成型机生产的水稻秸秆压块作为试验样本,并以密度、含水率、挥发分为影响因素,以压块的低位热值和高位热值为试验指标进行试验研究。试验采用三因素五水平二次回归正交旋转中心组合设计试验方法,利用Design-Expert8.0.6软件回归分析法和响应面分析法,建立了3个因素对热值影响的数学模型,对所建立的数学模型进行了试验性验证,其误差范围小于5%。试验分析表明:各因素对低位热值的影响顺序依次是:密度>含水率>挥发分,对高位热值的影响顺序依次是:密度>挥发分>含水率;密度是1.39 g/cm3,含水率为13.68%,挥发份为0.76,可达最佳低位热值2849.45 kcal;最佳高位热值的模型指标为:密度为0.92 g/cm3,含水率为23.21%,挥发分为0.75,可达最佳高位热值4313.54 kcal。最佳综合热值模型的指标为:密度为1.18 g/cm3,含水率为11.78%,挥发分为0.78,水稻秸秆压块的低位热值为2830.48 kcal,高位热值为4488.05 kcal;密度为1.43 g/cm3,含水率为14.84%,挥发分为0.80,水稻秸秆压块的低位热值为2851.08 kcal,高位热值为4480.91 kcal。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号