首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   3篇
  国内免费   1篇
  1篇
综合类   2篇
水产渔业   4篇
畜牧兽医   27篇
  2022年   3篇
  2021年   5篇
  2020年   9篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2011年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2003年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
1.
Aquaculture pond is a complex ecosystem where the microorganisms in the sediments, in the animal intestinal tract and in water interact with each other to influence the water quality and health of aquatic animals. In order to understand the spatial distribution and relationship of microbial communities in intensively farmed genetically improved farmed tilapia (GIFT, Oreochromis niloticus), 454 high‐throughput pyrosequencing was applied to analyse the 16S rRNA gene of bacteria in intensive GIFT ponds in Wuxi City, Jiangsu Province, China. A total of 72 747 initial sequences were obtained from four depths of pond water, from tilapia large intestines and from pond sediment. The most common phylum in all samples was Proteobacteria, Actinobacteria and Cyanobacteria were the most abundant in water, Fusobacteria and Firmicutes in the large intestine and Chloroflexi in sediment samples. The sediment microbial community structure was comparatively similar to that of the tilapia large intestine. The microbial communities from different water depths were somewhat similar, especially the three most shallow samples, although the abundance of Actinobacteria gradually decreased with increased water depth. This data offer a preliminary exploration of the response mechanisms of the bacterial communities to aquafarming and contributes to the understanding of the status of bacterial communities of tilapia pond systems during the peak period of breeding from the aspect of their spatial distributions.  相似文献   
2.
为研究大黄鱼(Larimichthys crocea)消化道的菌群结构、消化酶和非特异性免疫酶活力特征,本研究采用高通量测序技术系统分析大黄鱼胃、幽门盲囊和肠道中菌群组成及分布,并对比研究工厂化养殖和网箱养殖模式下的消化道菌群;同时,结合生化分析方法解析2种模式下消化道消化酶和非特异性免疫酶活力特征。结果显示,2种养殖模式下,菌群多样性随消化道延伸呈下降趋势;乳杆菌科(Lactobacillaceae(f))、Fructobacillus、黄杆菌属(Flavobacterium)等代表的菌属为共有优势菌群。其中,拟杆菌属(Bacteroides)和Anaerostipes等的丰度随消化道延伸呈下降趋势,而乳杆菌科、E01_9C_26_marine_group(o)所代表的菌属及黄杆菌属等则相反;普氏菌属(Prevotella_9)、乳杆菌科代表的菌属为2种模式养殖大黄鱼的主要差异菌属。工厂化养殖条件下,幽门盲囊和肠道中的菌群组成及其参与营养和免疫相关代谢通路的基因数目差异不显著(P>0.05),但与胃部的菌群组成和相关代谢通路基因数目存在明显差异;而网箱养殖大黄鱼胃部与幽门盲囊和肠道的菌群结构及相关代谢通路基因数目差异相对较小。2种养殖模式下的大黄鱼消化道菌群与饲料菌群相近。另外,胃和幽门盲囊也具有非特异性免疫酶活性,说明,整个消化道还具有一定的化学免疫屏障作用。本研究结果将为大黄鱼健康养殖提供基础参考,并为消化道菌群生理功能探讨提供理论依据。  相似文献   
3.
《Veterinary microbiology》2015,175(2-4):319-324
The bacteria present in the uterus during pyometra have previously been studied using bacteriological culturing. These studies identified Fusobacterium necrophorum and Trueperella pyogenes as the major contributors to the pathogenesis of pyometra. However, an increasing number of culture-independent studies have demonstrated that the bacterial diversity in most environments is underestimated in culture-based studies. Consequently, fastidious pyometra-associated pathogens may have been overlooked. Therefore, the primary purpose of this study was to investigate the diversity of bacteria in the uterus of cows with pyometra by using culture-independent 16S rRNA PCR combined with next generation sequencing.We investigated the microbial composition in the uterus of 21 cows with pyometra, which were obtained from a Danish slaughterhouse. Similar to the observations from the culture studies, Fusobacteriaceae, the family that F. necrophorum belongs to, was the operational taxonomic unit (OTU) observed in the largest quantities. By contrast, the Actinomycetaceae family, which includes T. pyogenes, constituted only 1% of the total number of reads. Thus we cannot confirm the previously reported role of species from this family in the pathogenesis of pyometra. Finally, we identified a large number of sequences representing three families of Gram-negative bacteria in the pyometra samples: Porphyromonadaceae, Mycoplasmataceae, and Pasteurellaceae. It is likely that these families comprise potential pathogenic species of a fastidious nature, which have been overlooked in previous studies. Our results increase the knowledge of the complexity of the pyometra microbiota and suggest that pathogens in addition to F. necrophorum may be involved in the pathogenesis of pyometra.  相似文献   
4.

Background

Serotonin (5‐hydroxytryptamine, 5HT) is involved in hypothalamic regulation of energy consumption. Also, the gut microbiome can influence neuronal signaling to the brain through vagal afferent neurons. Therefore, serotonin concentrations in the central nervous system and the composition of the microbiota can be related to obesity.

Objective

To examine adipokine, and, serotonin concentrations, and the gut microbiota in lean dogs and dogs with experimentally induced obesity.

Animals

Fourteen healthy Beagle dogs were used in this study.

Methods

Seven Beagle dogs in the obese group were fed commercial food ad libitum, over a period of 6 months to increase their weight and seven Beagle dogs in lean group were fed a restricted amount of the same diet to maintain optimal body condition over a period of 6 months. Peripheral leptin, adiponectin, 5HT, and cerebrospinal fluid (CSF‐5HT) levels were measured by ELISA. Fecal samples were collected in lean and obese groups 6 months after obesity was induced. Targeted pyrosequencing of the 16S rRNA gene was performed using a Genome Sequencer FLX plus system.

Results

Leptin concentrations were higher in the obese group (1.98 ± 1.00) compared to those of the lean group (1.12 ± 0.07, P = .025). Adiponectin and 5‐hydroytryptamine of cerebrospinal fluid (CSF‐5HT) concentrations were higher in the lean group (27.1 ± 7.28) than in the obese group (14.4 ± 5.40, P = .018). Analysis of the microbiome revealed that the diversity of the microbial community was lower in the obese group. Microbes from the phylum Firmicutes (85%) were predominant group in the gut microbiota of lean dogs. However, bacteria from the phylum Proteobacteria (76%) were the predominant group in the gut microbiota of dogs in the obese group.

Conclusions and Clinical Importance

Decreased 5HT levels in obese group might increase the risk of obesity because of increased appetite. Microflora enriched with gram‐negative might be related with chronic inflammation status in obese dogs.  相似文献   
5.
6.
The gastrointestinal microbiome is a diverse consortium of bacteria, archaea, fungi, protozoa, and viruses that inhabit the gut of all mammals. Studies in humans and other mammals have implicated the microbiome in a range of physiologic processes that are vital to host health including energy homeostasis, metabolism, gut epithelial health, immunologic activity, and neurobehavioral development. The microbial genome confers metabolic capabilities exceeding those of the host organism alone, making the gut microbiome an active participant in host physiology. Recent advances in DNA sequencing technology and computational biology have revolutionized the field of microbiomics, permitting mechanistic evaluation of the relationships between an animal and its microbial symbionts. Changes in the gastrointestinal microbiome are associated with diseases in humans and animals including inflammatory bowel disease, asthma, obesity, metabolic syndrome, cardiovascular disease, immune‐mediated conditions, and neurodevelopmental conditions such as autism spectrum disorder. While there remains a paucity of data regarding the intestinal microbiome in small animals, recent studies have helped to characterize its role in host animal health and associated disease states. This review is intended to familiarize small animal veterinarians with recent advances in the field of microbiomics and to prime them for a future in which diagnostic tests and therapies will incorporate these developments into clinical practice.  相似文献   
7.
Dietary fibers (DF) contain an abundant amount of energy, although the mammalian genome does not encode most of the enzymes required to degrade them. However, a mutual dependence is developed between the host and symbiotic microbes, which has the potential to extract the energy present in these DF. Dietary fibers escape digestion in the foregut and are fermented in the hindgut, producing short-chain fatty acids (SCFA) that alter the microbial ecology in the gastrointestinal tract (GIT) of pigs. Most of the carbohydrates are fermented in the proximal part, allowing protein fermentation in the distal part, resulting in colonic diseases. The structures of resistant starch (RS), arabinoxylan (AX), and β-glucan (βG) are complex; hence, makes their way into the hindgut where these are fermented and provide energy substrates for the colonic epithelial cells. Different microbes have different preferences of binding to different substrates. The RS, AX and βG act as a unique substrate for the microbes and modify the relative composition of the gut microbial community. The granule dimension and surface area of each substrate are different, which influences the penetration capacity of microbes. Arabinose and xylan are 2 different hemicelluloses, but arabinose is substituted on the xylan backbone and occurs in the form of AX. Fermentation of xylan produces butyrate primarily in the small intestine, whereas arabinose produces butyrate in the large intestine. Types of RS and forms of βG also exert beneficial effects by producing different metabolites and modulating the intestinal microbiota. Therefore, it is important to have information of different types of RS, AX and βG and their roles in microbial modulation to get the optimum benefits of fiber fermentation in the gut. This review provides relevant information on the similarities and differences that exist in the way RS, AX, and βG are fermented, and their positive and negative effects on SCFA production and gut microbial ecology of pigs. These insights will help nutritionists to develop dietary strategies that can modulate specific SCFA production and promote beneficial microbiota in the GIT of swine.  相似文献   
8.
为了解厚壳贻贝(Mytilus coruscus)各组织中微生物的分布差异,本实验在Illumina MiSeq 测序平台利用16S rDNA克隆子测序(V3-V4区)对嵊泗养殖贻贝的血淋巴、消化腺、肾脏、鳃、外套膜、性腺和足等7种组织中的微生物群落结构进行分析,并比较组织间微生物的多样性差异。结果显示,21个样本平均产生36,860条高质量序列。血淋巴共有1,237个OTU,其次是消化腺(1,014个OTU)和肾脏(1,015个OTU),性腺最少(仅有553个OTU)。尽管血淋巴OTU数最高,但仅有9个独有OTU。肾脏拥有最多172个独有OTU,消化腺次之(144个独有OTU)。所有组织中均以变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)和疣微菌门(Verrucomicrobia)为主要菌群。Alpha多样性指数分析显示血淋巴、消化腺和肾脏微生物多样性最高。以上结果表明,厚壳贻贝微生物存在一定的组织差异性,这将为今后深入阐释厚壳贻贝与微生物之间的相互作用及其调控机理奠定基础。  相似文献   
9.
The gut microbiota is comprised of a diverse array of microorganisms that interact with immune system and exert crucial roles for the health. Changes in the gut microbiota composition and functionality are associated with multiple diseases. As such, mobilizing a rapid and appropriate antimicrobial response depending on the nature of each stimulus is crucial for maintaining the balance between homeostasis and inflammation in the gut. Major players in this scenario are antimicrobial peptides (AMP), which belong to an ancient defense system found in all organisms and participate in a preservative co-evolution with a complex microbiome. Particularly increasing interactions between AMP and microbiota have been found in the gut. Here, we focus on the mechanisms by which AMP help to maintain a balanced microbiota and advancing our understanding of the circumstances of such balanced interactions between gut microbiota and host AMP. This review aims to provide a comprehensive overview on the interplay of diverse antimicrobial responses with enteric pathogens and the gut microbiota, which should have therapeutic implications for different intestinal disorders.  相似文献   
10.
利用高通量测序方法对虎纹蛙前肠、中肠和后肠微生物结构和功能进行分析。结果表明,虎纹蛙(Rana rugulosa)肠道核心菌群是厚壁菌门(Firmicutes)、变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、梭杆菌门(Fusobacteria)和放线菌门(Actinobacteria)。Romboutsia属、鲸杆菌属(Cetobacterium)、叶杆菌属(Phyllobacterium)是绝对优势菌属。肠道中存在弧菌(Vibro)、邻单胞菌(Plesiomonas)、气单胞菌(Aeromonas)、爱德华氏菌(Edwardsiella)不动杆菌属(Acinetobacter)、黄杆菌属(Flavobacterium)、脱硫弧菌属(Desulfovibrio)、鞘脂单胞菌属(Sphingomonas)、伊丽莎白菌(Elizabethkingia)等常见的条件致病菌和芽孢杆菌(Bacillus)、乳酸杆菌(Lactobacillus)和双歧杆菌(Bifidobacterium)等潜在益生菌。比较发现,前肠和中肠微生物丰度和多样性显著高于后肠,且在门和属水平菌群结构差异明显;前肠和中肠微生物功能相似,与能量代谢、维生素代谢、氨基酸代谢、脂代谢、外源物质降解和代谢关联微生物丰度较高,而后肠中与核酸代谢、碳水化合物代谢关联微生物丰度较高。前肠和中肠中与信号转导、神经系统、内分泌系统、转运和分解等关联微生物丰度较高,后肠中与信号分子互作、细胞过程与信号、增殖与修复、免疫系统、翻译、转录、酶家族、环境适应、膜转运等关联微生物丰度较高。本研究解析了虎纹蛙肠道菌群结构和功能,为虎纹蛙健康养殖提供理论基础。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号