首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   2篇
水产渔业   8篇
  2017年   1篇
  2016年   2篇
  2010年   1篇
  2007年   1篇
  2006年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有8条查询结果,搜索用时 250 毫秒
1
1.
Large amount of seawater is used in coastal industries, like power generating plants, desalination plants and aquatic culture farms. A similar requirement exists in Department of Atomic Energy campus at Kalpakkam, Tamil Nadu, India. Seawater in large quantities is required for its nuclear power stations and desalination plants erected on the east coast of Bay of Bengal situated in southern part of India. Such seawater systems have biofouling problems. Hence a seawater intake system has been designed, constructed and erected so that virgin seawater will be available for biofouling studies that was proposed to be carried in a once through flow test facility. A major criterion for the test facility was that continuous supply of seawater should be available at the rate of 160 m3/h. To meet this requirement, centrifugal pumps were installed at about 150 m away from the shoreline and connected to an intake structure using 600 m long, 355 mm OD, high density polyethylene pipeline laid on the seabed. Details of site selection, options of construction methods, materials selection, pressure drop calculations, sizing of pipes and anchor blocks, stability of intake pipeline, deployment criteria and project cost and planning have been discussed in this paper.  相似文献   
2.
In this study, waves propagating through a square array of 16 net cages with different levels of biofouling are numerically studied using a three-dimensional computational fluid dynamics (CFD) model. A porous-media fluid model is adopted to simulate both clean and biofouled netting of a cage array in waves. A numerical wave tank is built, and the oscillating-boundary method is adopted to generate waves. The flow motion is solved by the Navier-Stokes equations, and the free water surface is captured using the volume of fluid (VOF) method. The numerical model is validated by comparing the numerical data with corresponding experimental measurements of a net-cage model with clean netting. To analyze wave attenuation, a numerical analysis of wave elevation both inside and around the cage arrays is presented, which considers the effect of biofouling. Based on the results of the present study, the effect of biofouling on wave elevation is noticeable; the damping effect of the cage array increases with increasing level of biofouling. Furthermore, the incident angle of waves has a noticeable effect on the wave field inside and around the cage array.  相似文献   
3.
Drag force acting on biofouled net panels   总被引:1,自引:0,他引:1  
Measurements were made to assess the increase in drag on aquaculture cage netting due to biofouling. Drag force was obtained by towing net panels, perpendicular to the incident flow, in experiments conducted in a tow tank and in the field. The net panels were fabricated from netting stretched within a 1 m2 pipe frame. They were towed at various speeds, and drag force was measured using a bridle-pulley arrangement terminating in a load cell. The frame without netting was also drag tested so that net-only results could be obtained by subtracting out the frame contribution. Measurements of drag force and velocity were processed to yield drag coefficients.

Clean nets were drag tested in the University of New Hampshire (UNH) 36.5 m long tow tank. Nets were then exposed to biofouling during the summer of 2004 at the UNH open ocean aquaculture demonstration site 1.6 km south of the Isles of Shoals, New Hampshire, U.S.A. Nine net panels were recovered on 6 October 2004 and immediately drag tested at sea to minimize disturbing the fouling communities. The majority of the growth was skeleton shrimp (Caprella sp.) with some colonial hydroids (Tubularia sp.), blue mussels (Mytilus edulus) and rock borer clams (Hiatella actica). Since the deployment depth was 15 m (commensurate with submerged cages at the site), no algae were present. The net panels had been subject to several different antifouling treatments, so the extent of growth varied amongst the panels. Drag force measurements were made using a bridle-pulley-load cell configuration similar to that employed in the tow tank. Fixtures and instruments were mounted on an unpowered catamaran that was towed alongside a workboat. Thus, the catamaran served as the “carriage” for field measurements.

Increases in net-only drag coefficient varied from 6 to 240% of the clean net values. The maximum biofouled net drag coefficient was 0.599 based on net outline area. Biofouled drag coefficients generally increased with solidity (projected area of blockage divided by outline area) and volume of growth. There was, however, considerable scatter attributed in part to different mixes of species present.  相似文献   

4.
Amoebic gill disease (AGD) is currently the most important disease affecting the Tasmanian salmonid industry and is caused by a marine amoeba, Neoparameoba pemaquidensis (Page, 1970). In this study biofouling communities on salmon cages were surveyed for the presence of the disease agent over a period of 4 months. Malt–yeast–seawater (MYS) agar plates were used to culture N. pemaquidensis with its presence confirmed by immunofluorescent antibody test (IFAT). Positive percentages of categorised samples ranged from 0% to 55%. The survey detected the presence of N. pemaquidensis on a number of macrofouling species (in particular bryozoan Scrupocellaria bertholetti and solitary ascidian Ciona intestinalis), and in microfouling and water samples. High percentages of positive IFATs occurred in microfouling aggregates, the solitary ascidian, C. intestinalis, and centrifuged water samples. No positive IFATs occurred from samples of Caprella sp. The presence of N. pemaquidensis was sporadic and varied in species and over sampling month. Experimental exposure of Atlantic salmon, Salmo salar, to lightly fouled netting was conducted to assess the potential for microfouling to act as a source of infection. No signs of the disease were detected in fish exposed to lightly fouled netting treatments, while 100% of positive control fish were infected and had an average of 4.24±1.79 amoebae per field of view in IFAT of mucus smears. When combined with N. pemaquidensis loads in the water column, the loads of amoebae in biofouling communities may contribute to disease outbreaks. Thus, biofouling should be considered a risk factor for AGD outbreaks.  相似文献   
5.
网箱网衣防污涂料的对比试验研究   总被引:1,自引:0,他引:1  
通过定量测试、活生物养殖实验和海上挂样观察方法,对新研制的两种涂料与国内已应用的两种涂料、1种美国Flexgard水性涂料进行了涂料附着率、急性毒性和海上挂样网片防污效果对比试验。结果表明,新研制的两种涂料的使用量与美国Flexgard涂料水平相当;除新研制的1种涂料外,其余4种涂料均具有一定的急性毒性,尤以国内已应用的两种涂料毒性最大。防污效果,以新研制的N—15涂料和美国Flexgard涂料为好,挂样近7个月,生物附着仅为1~3级。在高温期间,未经防污处理的网片在1个月内生物附着增重率达到115.4%~157.7%。  相似文献   
6.
以2006年桑沟湾筏式养殖的栉孔扇贝为研究对象,测定了网笼内的水质状况及栉孔扇贝的死亡率,探讨了污损生物的可能影响。结果表明,(1)经过7个月的养殖,初始密度低于30个/层的实验组,栉孔扇贝的死亡率低于6%;高密度实验组(40个/层)的死亡率高达27%;(2)网笼内、外的磷酸盐、硅酸盐浓度没有显著性差异,但是,7、8月份的氨氮浓度差异较为明显;(3)同营养盐浓度的变化相比,网笼内、外叶绿素a浓度的变化较大,在9月份,高密度组的网笼内叶绿素a浓度低于0.67mg/m3,食物可能为高密度组扇贝生长、存活的限制因子;(4)8月份,高密度组网笼内的细菌总数显著高于笼外及其他密度组。分析认为,高温期网笼内的水质状况及食物限制可能与养殖栉孔扇贝的死亡有关。  相似文献   
7.
Periphyton grown on substrates is known to improve water quality in aquaculture ponds. Five different substrates, (i) bamboo pipe (ii) plastic sheet (iii) polyvinylchloride (PVC) pipe (iv) fibrous scrubber, and, (v) ceramic tile were evaluated for the formation of biofilm in this experiment. The substrates were suspended 25 cm below the water surface. Each type of substrate was collected fortnightly to analyze the abundance and biomass of different periphytic algae and of the biofouling organism. The study was terminated after 60 days due to severe fouling by polychaete. Results showed that pond water nutrients were high on day 60 with mean total ammonia-N, nitrite-N and soluble reactive phosphorus concentrations of 309.6 ± 8.6 μg L− 1, 26.0 ± 2.7 μg L− 1 and 87.2 ± 7.1 μg L− 1 respectively. During the first two weeks the substrates were colonized by 19 periphytic algae. The most abundant family was Bacillariophyta (8 genera) followed by Chlorophyta (7 genera) and Cyanophyta (4 genera). Periphyton colonization on bamboo pipe showed the highest (p < 0.05) biomass in terms of chlorophyll a amongst all the substrates used. The biomass varied from 179 to 1137 μg m− 2 with mean values of 1137.2 ± 0.6, 929.6 ± 0.6, 684.2 ± 1.2, 179.1 ± 0.6 and 657.0 ± 0.6 μg m− 2 on bamboo pipe, PVC pipe, plastic sheet, fibrous scrubber and ceramic tile respectively for the first 15 days. From 3rd week, polychaetes began to form tubes on the substrate. By day 60, the whole surface of all substrates was covered with tightly packed polychaete tubes with mean densities of 168.0 ± 15.4, 121.0 ± 13.5, 72.8 ± 9.8, 72.4 ± 7.4 and 56.0 ± 6.8 polychaete tubes cm− 2 for bamboo, PVC, plastic, fibrous scrubber and ceramic tile respectively. This study illustrated the invasive nature of attached polychaete thus hampering the formation of periphyton biofilm on substrates which could have been used for improving water quality in enriched brackishwater shrimp ponds.  相似文献   
8.
2014年4-6月在桑沟湾海区进行鼠尾藻(Sargassum thunbergii)海上筏式养殖实验,分析了鼠尾藻在桑沟湾的生长特性,调查了藻体上的附着生物.结果显示,(1)鼠尾藻在桑沟湾海域生长迅速,水温为10-17℃时特定生长率最高,可达6.10%/d;根据特定生长率与水温的关系,获得了鼠尾藻的最佳生长温度为14.9℃;(2)5月10日开始有生殖托形成,水温达到20.4℃时,鼠尾藻生殖托大量成熟,并有放散;(3)养殖期间,鼠尾藻最大长度达187.05 cm,均长可达112.31 cm;干湿比由0.147(4月)上升至0.189(6月);每公顷产量可达43.95 t(湿重),相当于干重为8.25 t;(4)藻体上有大型附着生物16种,主要优势种为尖嘴扁颌针鱼鱼卵、玻璃海鞘和海绵;附着生物的生物量随着水温升高而增加.研究表明,海区的附着生物对鼠尾藻的生长影响不大,在桑沟湾大规模养殖鼠尾藻是可行的.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号