首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   1篇
  国内免费   9篇
基础科学   29篇
  9篇
综合类   3篇
园艺   1篇
  2024年   2篇
  2022年   5篇
  2021年   1篇
  2020年   4篇
  2019年   2篇
  2018年   6篇
  2016年   3篇
  2015年   1篇
  2014年   5篇
  2012年   3篇
  2011年   1篇
  2010年   6篇
  2009年   3篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
1.
草地振动式间隔松土机设计与试验   总被引:5,自引:1,他引:4  
针对我国草原长期过载放牧,造成土壤板结严重,导致草原退化的问题,设计了9ST-460型草地振动式间隔松土机.该机采用间隔配置的梯形框架式松土部件,利用曲轴连杆机构产生的向上激振力,对通过松土部件的土壤进行强制振动疏松,实现了在不破坏草原植被的条件下,对高坚实度草原土壤的松土作业.田间试验表明:机具在前进速度1 m/s、振动频率10.0 Hz情况下,作业稳定,松土效果明显.经检测,松土平均深度20.01 cm,松土比43.4%,植被破坏率1.6%,生产率0.85 hm~2/h,达到了技术要求.作业后土壤容积密度和坚实度平均降低了30.0%和48.8%,可以获得适合牧草生长的虚实并存的耕作层,提高了土壤的蓄水保墒能力,天然草地和人工草地牧草产量分别增产73.99%和68.65%.  相似文献   
2.
穴孔式水稻排种器投种过程分析   总被引:4,自引:0,他引:4  
在水稻工厂化穴盘育秧播种过程中,排种器的投种过程是影响播种性能的最后环节,为满足排种器播种性能要求,对投种过程中种子运动规律、投种机理等进行了理论分析.把投种过程分为及时投种、延迟投种和强制投种过程,推导出每个过程中排种器各参数与穴盘运动速度间的关系式,并对投种过程进行了高速摄像分析,验证了理论分析的合理性.建立了型孔长度与排种器相关参数间的限制关系式,分析表明合理选择排种器设计参数,能够保证种子不与型孔另一边壁发生碰撞,实现顺利投种.  相似文献   
3.
四要素变量施肥机肥箱施肥量控制算法设计与试验   总被引:2,自引:0,他引:2  
针对黑龙江农垦地区垄作玉米施肥过程中遇到的肥料分层问题,设计了一种四要素变量施肥控制系统。系统采用电液比例控制技术,主要由液晶显示终端、变量施肥控制器、4路液压马达和编码器、4路排肥机构(排肥轴和外槽轮)和GNSS模块组成。为了实现氮肥、磷肥、钾肥和微肥的一次性及时、准确施用,提出了一种基于复合交叉原则的各路施肥量确定策略,基于PID技术设计了液压马达控制算法。根据用户在变量施肥控制软件中设置的目标施肥量,系统自动确定各肥箱精确施肥量,基于PID液压马达控制算法,实时计算4路液压马达的目标转速,同步向控制器发送4路转速指令,一次性完成氮肥、磷肥、钾肥和微肥4种肥料的同步变量施用。为了验证各路施肥量控制算法的效果,分别进行了PID算法响应时间和精度试验、变量施肥系统单质肥排肥性能验证试验和作业条件下各肥箱施肥量控制算法验证试验。试验结果表明,基于PID技术的排肥轴转速控制算法响应时间不大于0.5s;变量施肥系统单质肥排肥性能误差绝对值不大于3%;作业条件下各路施肥量控制算法显著减少了氮素的施用量,实现了氮肥、磷肥、钾肥的精确投入。四要素变量施肥机各路施肥量控制算法完全满足了垦区玉米施肥精确、均匀施用的要求。  相似文献   
4.
基于姿态实时监测的多路精准排肥播种控制系统研究   总被引:1,自引:0,他引:1  
针对现有精准排肥播种控制系统缺少对机具姿态进行监测判别的现状,在现有精准排肥播种控制系统架构基础上,增加了机具作业姿态实时监测模块,使系统可以根据机具的实时前进速度和作业姿态自动控制排肥量和播种量,减少人员对系统的操作。该系统主要由车载控制终端、PID控制器、多路集成比例阀、光电转速测试码盘、机具姿态解析模块、机具位置与速度解析模块、液压马达等组成,其中机具姿态解析模块采用MPU6050芯片实时测量下拉杆与机架的俯仰角,应用STM32F103MCU芯片实时获取MPU6050芯片的输出数据,并反馈到车载控制终端,封装后的机具姿态解析模块安装在拖拉机三点悬挂的下拉杆中部,对下拉杆与水平面的夹角数据进行实时记录和反馈,判别机具的作业姿态是否处于工作状态。将该控制系统安装在小麦基肥精准分层施肥播种机上,在北京市昌平区小汤山国家精准农业研究示范基地,对该控制系统进行静态标定和动态试验,以检测可靠性和稳定性。静态标定试验结果显示,马达转速与系统的排肥排种量存在一元线性关系,此时浅层肥料、深层肥料和种子的单圈排量分别为16.97、29.31、11.2g;姿态标定结果表明,设置临界角为5.3°时,系统的机具姿态提示信息正确,能够满足姿态监测的要求;动态试验表明,机具工作状态下,浅层肥料、深层肥料和种子排量变异系数分别为3.5%、3.8%和3%,3路的排量偏差都控制在5%以内,机具抬升状态下,排肥排种轴处于静止状态,说明该系统的运行过程总体比较稳定,能够满足小麦基肥分层施肥播种机具的精量排肥排种的作业要求,同时能够减少人为操作流程。  相似文献   
5.
农田开沟机是一种经济、高效的农业开沟装置,是农田水利机械中不可或缺的一部分。它的应用对缩短开沟周期、提高开沟质量和降低成本起到了极其重要的作用。为此,对我国农田开沟机的现状与前景进行了综述。  相似文献   
6.
穴盘精密播种设备主要用于实现穴盘精密播种,是设施播种育苗环节的关键设备,可以减轻播种作业的劳动强度,提高播种效率。针对现有圆辊型孔式穴盘播种机的排种辊更换不方便、适应性差的问题,为满足丸粒化蔬菜种子精密播种的需要,设计了一种基于组合式排种辊的穴盘播种机。该机采用可拆卸排种辊的结构形式,排种辊采用排种盘分体组合式,由独立的排种盘组合而成,针对常用的50穴、72穴、128穴标准育苗盘设计了组合排种辊,不同育苗盘的播种作业只需要更换相应的排种盘,实现一机多用,并通过对排种盘清种和护种过程进行运动和受力分析,为播种机的完善设计与试验提供理论支撑。  相似文献   
7.
在水稻工厂化穴盘育秧播种过程中,排种器的投种过程是影响播种性能的最后环节,为满足排种器播种性能要求,对投种过程中种子运动规律、投种机理等进行了理论分析。把投种过程分为及时投种、延迟投种和强制投种过程,推导出每个过程中排种器各参数与穴盘运动速度间的关系式,并对投种过程进行了高速摄像分析,验证了理论分析的合理性。建立了型孔长度与排种器相关参数间的限制关系式,分析表明合理选择排种器设计参数,能够保证种子不与型孔另一边壁发生碰撞,实现顺利投种。  相似文献   
8.
甘薯种植多以裸苗移栽为主,对机械化移栽要求较高。针对国内甘薯移栽设备自动化程度低,作业时需要人工喂苗导致劳动强度大、机械化栽插质量不高的问题,结合甘薯裸苗栽植农艺要求,基于预处理苗带喂苗装置和挠性圆盘栽植装置设计了一种甘薯裸苗自动移栽机,结合甘薯裸苗移栽机喂苗装置、挠性圆盘栽植装置和浇水装置自动作业控制需要,设计了基于CAN总线的甘薯裸苗自动移栽机控制系统,能够一次性完成旋耕、起垄、开沟、自动有序喂苗、定株距栽插、镇压覆土、自动浇水、修垄等作业。田间试验表明,机具在目标株距25cm以及作业速度0.25、0.35、0.45m/s的情况下,栽植株距变异系数和栽植深度合格率均达到了标准要求,栽植株距变异系数和栽植姿态合格率受作业速度影响较大,栽植深度受作业速度变化影响较小,在作业速度为0.25m/s时,栽植株距变异系数平均值为10.16%,栽植深度合格率平均值为95.56%,作业性能优于0.35m/s和0.45m/s,栽植姿态合格率平均值为90%。本研究为甘薯裸苗机械化、自动化移栽机械的理论研究和设计提供了新的参考。  相似文献   
9.
It depended on the spatial and temporal variation of soil and grain yield to implement precision agriculture.Grain yield monitoring on combine harvester was a cornerstone of precision fertilization.The intelligent grain yield monitoring system with the sensors and DGPS (differential global positioning system), which was loaded on the combine harvester, could get the different blocks’ yield and produce the yield map.In this study, a new grain yield monitoring system based on CAN bus technology was developed.The system consisted of sensor unit, data acquisition unit, GPS module and LCD (liquid crystal display) terminal.The grain yield data were collected by the grain flow sensor, and processed by the signal condition circuit.And then the grain yield data and GPS signal were transmitted to the control unit by CAN bus.With the algorithm of grain yield conversion, all the collected data including real-time grain yield, harvest area and average grain yield were displayed on the LCD terminal.Flow sensor unit included grain yield flow sensor, force impact plate and mounting bracket.The sensor frame was mounted at the top of clean grain elevator of combine harvester.When the elevator paddles rotated around the sprocket, grain was propelled towards a flat impact plate.As grain momentum was lost in the subsequent collision with the impact plate, an effective force was measured by the impact parallel-beam load cell.Along with the calibration relationship between measured force and mass flow rate, the output of the impact parallel-beam load cell could indicate the flow rate of grain yield.Data acquisition unit included power conversion circuit, sensor signal acquisition circuit, analog-to-digital conversion circuit and CAN communication circuit.It could fulfill data acquisition function, CAN communication function and interrupt handling function.LCD terminal had the function of sensor detection, the function of GPS information collection, parameter calibration, data display and storage.It could display the real-time grain yield, total yield, average yield and harvest area.In order to evaluate the grain yield monitoring system, 3 experiments which included static performance experiment of grain yield flow sensor, platform test experiment of grain yield monitoring system and dynamic performance experiment on combine harvester were carried out.The result of platform test experiment showed that the system error between predicted yield and measured yield was less than 3% and the system could avoid the effect of vibration from the platform effectively.Field dynamic experiment showed that the system error was less than 5%.Both the experimental results indicated that the grain yield monitoring system could satisfy the need of practical production.  相似文献   
10.
基于卫星定位的玉米高位精播种子着床位置预测方法   总被引:1,自引:0,他引:1  
玉米植株的精确空间位置分布信息可为中耕、植保、对行收获等田间精准作业提供数据支撑,是玉米精细化生产的基础。本文提出一种基于卫星定位的玉米高位精播种子着床位置预测方法。基于卫星精准定位播种机组位置,结合播种机结构特点构建播种机组与播种单体相对位置模型,基于EDEM数值模拟和动态仿真,构建高位精播种子着床补偿模型,搭建种子着床位置预测系统,实现了玉米播种环节种子着床位置的精准预测。田间试验表明,作业速度、定位数据更新率对着床位置偏差影响极显著(p<0.01),播种株距对着床位置偏差影响显著(p<0.05);作业速度对着床位置预测准确率影响显著(p<0.05),播种株距、定位数据更新率对着床位置预测准确率影响不显著(p>0.05)。着床位置偏差随着作业速度的减小、播种株距和定位数据更新率的增大而减小;着床位置预测精确率随作业速度的减小而增大。作业速度、播种株距、定位数据更新率为3 km/h、0.4 m、10 Hz时,着床位置预测最准确,平均着床位置偏差和着床位置预测准确率分别为24.3 mm和88.9%。该系统能将玉米高位精播种子着床位置的预测控制在厘米级。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号