首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   3篇
  国内免费   9篇
林业   4篇
农学   3篇
基础科学   54篇
  7篇
综合类   6篇
农作物   1篇
水产渔业   1篇
畜牧兽医   2篇
植物保护   1篇
  2022年   2篇
  2021年   4篇
  2019年   5篇
  2018年   3篇
  2017年   5篇
  2016年   1篇
  2015年   3篇
  2014年   6篇
  2013年   10篇
  2012年   2篇
  2011年   7篇
  2010年   5篇
  2009年   3篇
  2007年   8篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  1997年   1篇
  1994年   1篇
  1990年   1篇
排序方式: 共有79条查询结果,搜索用时 31 毫秒
1.
Currently, very few aquaculture operations are employing airlift pump technology for water recirculation, aeration, and waste removal. This is likely due to the poor design and lower efficiency of traditional airlift design, the limited amount of research effort that has been invested in improving performance capabilities of air lift pumps and the general lack of awareness of the industry about the inherent advantages of airlift systems. A new efficient airlift pump is hydrodynamically designed by incorporating the Volume of Fluid (VOF) multi-phase model along with the K-ε turbulence model utilizing Computational Fluid Dynamics (CFD) tools. The pump is designed to offer a substantial reduction in total energy usage as well as an improved quality of the culture products in order to make it attractive to aquaculture industry. In this study, both numerical and experimental investigations were carried out for airlift systems operating under two different submergence ratios of 50% and 90% in a lab setting using 2.54 cm diameter pumps. Also, the performance of a large-scale pumps of 10.16 cm diameters were also tested in an aquaculture raceway to determine its effect on the operation. The numerical results were found to be in agreement with the experiments within ±20% which is considered very reasonable for multiphase flow analysis. The present study was found to present a great tool for modelling the airlift pump performance, and potentially proposing new designs.  相似文献   
2.
宋涛 《森林工程》2003,19(5):42-43
介绍了喷油器的类型 ,阐述了喷油器滴油等 8种喷油器常见故障以及排除方法 ,并介绍了喷油器的保养与维修和喷油器维修应注意的问题。  相似文献   
3.
通过对喷油驱动电路的波形测试来介绍波形分析的一般方法,并通过故障诊断实例来反映波形分析法诊断汽车故障的优越性。  相似文献   
4.
外开式汽油喷油器喷雾特性研究   总被引:1,自引:0,他引:1  
在定容弹内,采用纹影和激光Mie散射技术研究了外开式压电晶体汽油喷油器使用汽油、正丁醇和乙醇时的喷雾特性。结果表明,外开式喷油器喷油形成的空心圆锥状喷雾结构由线状油束组成。喷油背压对喷雾的宏观形态影响较大。随着喷油背压的升高,喷雾中油线间隙减小并最终消失,同时喷雾贯穿度与面积均大幅减小,但喷雾锥角基本不随背压、燃料种类和时间的变化而变化。此外,随着背压的升高,喷雾横向贯穿度的减小程度大于轴向贯穿度,但是横向贯穿度始终大于轴向贯穿度。粘度较大的乙醇和正丁醇的轴向贯穿度大于汽油。横向贯穿度与喷油产生的涡流有关。涡流尺度越大,则横向贯穿度也越大。  相似文献   
5.
对单缸柴油机双喷油器直喷燃烧系统进行了研究,分析了供油系统油管分叉夹角及截面收缩比、燃烧室油线布置及几何形状的优化原则。采用该燃烧系统,可增加燃油喷注在燃烧室内的自由贯穿长度,减少对进气涡流的依赖,促进混合气形成和燃烧;可降低气缸盖及活塞的热负荷;由于进、排气门中心线与气缸中心线处于同一平面,故气门流通面积大,可以改善进排气流动性能;可实现先缓后急的喷油规律。  相似文献   
6.
电控喷油器流量特性试验台的设计与试验   总被引:2,自引:0,他引:2  
论述了开发电控喷油器微机测试系统的意义;为检测电喷发动机喷油性能,介绍了所以8098为核心的喷油器流量试验台;阐述了喷油器流量试验台设计思想、硬件结构和软件设计方法.以高阻型喷油器为例,在整个流量范围内对其进行测试,并对测试数据加以分析总结,得出了该喷油器流量特性的一些重要参数.目前,电控喷油器微机测试系统已投入使用,取得了良好的实际效果.  相似文献   
7.
吴亚兰  唐娟  兰欣 《农机化研究》2007,(6):203-204,207
基于柴油机喷油器,设计了一种柴油机喷油规律测试系统.对喷油器进行改装设计,用以容纳、计量柴油机在喷油过程中喷出的油量,用位移传感器测量喷出油量的容积变化,通过数据处理得到喷油规律;设计了卸压装置,以防止测量系统因油压过高而受损.实验结果表明,该测试系统可以快捷地测量柴油机的喷油规律.  相似文献   
8.
文丘里施肥器控制性能试验分析   总被引:2,自引:0,他引:2  
在水肥一体化滴灌设施中,为优选文丘里施肥器的最佳控制方式,以规格为32mm的并联式文丘里施肥器为对象,在文丘里施肥器的进水口、出水口和与水管的并联连接处3个位置安装球阀调节压差进行试验。试验结果表明,在进水口处调节压差,肥液质量分数低于13%时不能调节;在与水管的并联连接处调节压差,可实现对肥液质量分数的调节,但当压差...  相似文献   
9.
严海军  初晓一 《排灌机械》2011,29(4):359-363
基于雷诺时均Navier-Stokes方程和标准k-ε湍流模型,利用Fluent软件对文丘里施肥器的内部流动进行了数值模拟,并对数值计算方法的正确性进行了验证.模拟分析了喉管进口直径为4,5,6 mm,以及出口直径与进口直径之比λ为1.0,1.1,1.2,1.3和1.4时15种结构方案的吸肥性能.结果表明:喉管直径对喉管及扩散段内流动特性、吸肥性能和效率均有一定影响,但出口直径与进口直径之比λ对文丘里施肥器性能的影响要明显甚于喉管进口直径.根据效率最高原则,喉管直径比应为1.2~1.3.建立了λ=1.2或1.3时文丘里施肥器吸肥效率与流量比之间的回归模型,并应用回归模型预测了吸肥效率最大值.喉管进口直径4 mm的文丘里施肥器当直径比为1.3时吸肥效率可达到15.5%,与直径比为1.0相比,前者的扩散段内部流动平顺、无漩涡出现,且相同横截面的平均湍动能值要小.该研究结果为文丘里施肥器的优化设计提供了一定的理论参考.  相似文献   
10.
高压涡旋喷油器喷雾撞壁机理研究   总被引:1,自引:0,他引:1  
为了研究直喷式汽油机高压涡旋喷油器喷雾撞壁机理,测量了撞壁喷雾的高度、喷雾半径及喷雾远端速度,分析了不同喷射压力、环境背压、喷嘴到壁面的距离、壁面倾角等因素对撞壁喷雾的影响.随着喷射压力、喷嘴到壁面的距离及壁面倾角的增加,喷雾的贯穿距离增大;环境背压的增大导致喷雾的贯穿距离减小.较高的喷射压力和较低的环境背压增大了撞壁燃油与壁面的接触面积,在壁面上形成的薄膜加速了燃油的蒸发.由经验公式计算得到的撞壁喷雾贯穿距离与试验测量值在一定范围内具有一致性,为燃烧室的设计、进气道形式的选取、喷油器和火花塞的布局提供了试验依据.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号