首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15193篇
  免费   817篇
  国内免费   1176篇
林业   1496篇
农学   1046篇
基础科学   724篇
  1916篇
综合类   7514篇
农作物   805篇
水产渔业   451篇
畜牧兽医   1781篇
园艺   722篇
植物保护   731篇
  2024年   131篇
  2023年   507篇
  2022年   668篇
  2021年   688篇
  2020年   679篇
  2019年   740篇
  2018年   481篇
  2017年   590篇
  2016年   668篇
  2015年   781篇
  2014年   941篇
  2013年   952篇
  2012年   1104篇
  2011年   1033篇
  2010年   900篇
  2009年   841篇
  2008年   930篇
  2007年   721篇
  2006年   499篇
  2005年   474篇
  2004年   358篇
  2003年   334篇
  2002年   212篇
  2001年   228篇
  2000年   181篇
  1999年   173篇
  1998年   156篇
  1997年   159篇
  1996年   152篇
  1995年   142篇
  1994年   140篇
  1993年   132篇
  1992年   108篇
  1991年   101篇
  1990年   95篇
  1989年   76篇
  1988年   32篇
  1987年   30篇
  1986年   11篇
  1985年   7篇
  1984年   8篇
  1983年   3篇
  1982年   4篇
  1981年   7篇
  1979年   2篇
  1977年   1篇
  1965年   2篇
  1963年   1篇
  1957年   2篇
  1956年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
基于改进遥感生态指数模型的锡林郭勒草原生态环境评价   总被引:1,自引:0,他引:1  
气候变化和人类活动的不断加剧,引发了生态环境质量问题,快速准确的评价区域生态环境的历史和现状,对实现人与自然的可持续协调发展具有重要意义。本文基于遥感技术分别反演出绿度因子、湿度因子、干度因子和热度因子,使用主成分分析法构建了改进遥感生态指数(MRSEI)。利用相关性分析,分析MRSEI的代表性,建立基于MRSEI的锡林郭勒草原生态环境评价模型,对锡林郭勒草原近26 a的生态环境进行了总体评价。结果表明:MRSEI可集中4种生态因子信息,能够准确的对生态环境进行评价;锡林郭勒草原从1991—2017年生态环境质量呈现出先好转后恶化的趋势; 1991年研究区上游的生态环境质量优于下游,生态环境质量东部优于西部; 2004年,研究区整体生态环境质量空间差异较1991年变化较大,上游大多数地区生态环境质量提升,但下游明显降低;至2017年,整个研究区生态环境质量全面降低,仅在锡林河上游两岸与流域的南部和东南部保持良和优良。  相似文献   
52.
  目的  通过对马尾松Pinus massoniana人工林密度指数模型的研究,为制定木材产量及质量的提升决策提供参考。  方法  以河南省薄山林场马尾松人工林为研究对象,采用147块标准地数据,以林分平均胸径为输入向量,以林分密度为输出向量,建立了林分密度指数人工神经网络(ANN)模型,并与Reineke的林分密度指数模型进行比较。  结果  ① 薄山林场马尾松人工林最大密度线斜率b为-1.516 3,马尾松标准平均胸径为14 cm,Reineke的林分密度指数模型精度为92.11%,t检验结果显著;②构建了网络结构为1:2:1的林分密度指数ANN模型,模型拟合精度为92.57%,均方误差为0.001 469 7。③无论采用Reineke林分密度指数还是人工神经网络技术,在拟合株数密度随林分平均胸径的变化趋势时,幼龄林组拟合效果都不理想,这与幼龄林组数据数量偏少有关。  结论  所建模型可为薄山林场马尾松抚育经营决策提供依据。  相似文献   
53.
  目的  探究低温对南极假山毛榉Nothofagus antarctica光系统Ⅱ(PSⅡ)的影响,利用综合生物反应指数(IBR)评价法计算低温胁迫下的叶绿素荧光综合指标的可行性。  方法  采取逐步降低环境温度的方法(从25 ℃降至?25 ℃),测量并分析南极假山毛榉叶片的相对叶绿素含量和快速叶绿素荧光,计算各温度下植株的综合生物反应指数,综合评价温度降低对PSⅡ光化学活性的影响。  结果  环境温度为15 ℃时,PSⅡ光化学活性无变化;环境温度为5 ℃时,放氧复合体损伤,PSⅡ各单位之间的能量流通受阻。低温(?5、?15和?25 ℃)导致相对叶绿素含量显著降低,PSⅡ供体侧受损加剧,电子传递效率下降,PSⅡ各单位之间的能量流通混乱,热耗散显著增加。各温度处理下植株的综合生物反应指数和相对叶绿素含量与测试温度均表现为显著负相关。  结论  低于?5 ℃的低温会对南极假山毛榉PSⅡ的光化学活性造成严重胁迫,综合生物反应指数可以综合评价低温胁迫对植株PSⅡ光化学活性和相对叶绿素含量的影响。图7表1参24  相似文献   
54.
利用中国气象局陆面数据同化系统(CLDAS)验证了2015—2016年土壤水分主动-被动微波数据集(SMAP)在河套灌区的适用性,基于土壤水分亏缺指数(SWDI )和干旱周百分比(PDW)分析了作物生育期内灌区农业干旱时空演变规律,通过两个参考指标检验了SWDI在河套灌区的精度。结果表明:(1)SMAP在河套灌区的适用性较好;区域尺度上,SMAP和CLDAS的相关系数为0.65;栅格尺度上,约有69%的栅格表现良好(R>0.5),且多集中在灌区西南部和东北部。(2)严重干旱主要发生在4月下旬到5月中旬、7月下旬到8月下旬以及9月中旬到10月中旬,主要集中在灌区的西南部、中部和东部;2015—2016年PDW值略有增大,干旱事件的持续时间有所延长。(3)大气水分亏缺量(AWD)表征的气象干旱在时间上显示2 a内灌区干旱月份为5—8月;空间上,除去地形原因,SWDI和AWD的相关性较为显著,且有一半格点通过了显著性水平为0.01的显著检验,表明基于SWDI对河套灌区进行干旱状况分析具有较高的可信度。  相似文献   
55.
为了实现对藏北区域范围内春夏旱情的动态连续监测,基于温度植被干旱指数(TVDI)和模糊数学方法建立了遥感干旱的划分标准,研究时段为1980-2017年。首先利用MODIS产品数据计算TVDI,然后根据气象干旱等级监测结果,采用模糊数学法建立基于MODIS TVDI的干旱等级划分标准,并对监测结果进行精度验证,最后分析了近年来藏北地区旱情的时空变化特征。得到的主要结论:①基于归一化植被指数(NDVI)和增强植被指数(EVI)计算得到的温度植被干旱指数TVDIN和TVDIE,均与20 cm实测土壤水分含量在0.05的水平达到显著相关,TVDIE的决定系数更高;②基于TVDIE将旱情划分为无旱、轻旱、中旱、重旱、特旱5个等级,其中,据此标准获得的藏北地区旱情等级与气象干旱等级监测结果大体一致;③近年来藏北地区旱情整体不太严重,且总体趋缓,其中,2009年最严重,发生中旱及以上旱情的区域面积达24%,年内旱情在6月最严重。就旱情的空间分布特征而言,研究区西南部和中部干旱比较严重,北部和东南部相对较轻。研究成果可为藏北地区干旱监测提供数据支撑,遥感干旱等级的划分方法可为其他地区的干旱研究提供参考。  相似文献   
56.
【目的】探索海滨木槿的繁育系统及传粉生物学特征.【方法】以海滨木槿为试验材料,运用杂交指数、花粉/胚珠比、座果率等指标,首次对海滨木槿的繁育特征及传粉生物学等进行了初步研究.【结果】海滨木槿的花朵包括5个花瓣,少数为4个或者6个花瓣;花期5~10月;开花当天的花粉活力呈单峰曲线,在13∶00时活力最高,开花当天柱头都具有可授性;海滨木槿的杂交指数为4,繁育系统为异交、部分自交亲和、需要传粉者;海滨木槿的花粉/胚珠比为350.6±11.6,繁育系统属于兼性异交;5)海滨木槿自然坐果率为95%;人工同株同花授粉的座果率为70%;人工异株异花授粉坐果率为92%;各种授粉方式下,种子平均数为31~35,没有显著差异;海滨木槿的主要传粉昆虫是蚂蚁.【结论】海滨木槿繁育系统属于兼性异交;主要传粉昆虫是蚂蚁.  相似文献   
57.
《安徽农业科学》2020,(3):61-68
以我国天山乌鲁木齐河源1号冰川(以下简称1号冰川)为例,基于Landsat TM/ETM/OLI和Sentinel-2A MSI数据,利用归一化差异积雪指数(NDSI)和阈值法提取该冰川2002—2015年的平衡线高度,并利用站点实测的冰川ELA数据和气象数据对提取的平衡线高度进行了验证。结果表明,2002—2015年遥感获取的平衡线高度呈总体上升的趋势,与实测的平衡线具有高度相关性(r=0.9);ELA与年物质平衡序列高度相关,物质平衡波动的平均解释率可高达69%;与气象要素(温度和降水)年际变化的相关性也很高,约有59%的冰川ELA变化可以用夏季气温和降水来解释。因此,利用遥感数据可以提取高精度的冰川平衡线高度数据,对无站点数据冰川的平衡线高度以及物质平衡研究具有一定的借鉴意义。  相似文献   
58.
【目的】构建赤松赤枯病病基指数(Disease based index,DBI)评价体系,定量评价与林分因子共同作用后,立地因子对赤松纯林中赤枯病发生程度的作用等级。【方法】在林龄相对一致(34±2)年的赤松纯林生态系统中设立临时样地,筛选影响赤松赤枯病发生的关键林分因子,建立关键林分因子与赤枯病病情指数的函数关系,选取最优模型作为主曲线;将主曲线等比值拉伸得赤枯病病基指数曲线群,其自下而上依次表示不同的病基指数,即立地对赤枯病发生程度的作用等级。【结果】1)基于森林病害发生的基本原理,提出病基指数的概念。2)确定赤松赤枯病病基指数的定量方法,它包含样地的设立、病情指数的调查、林分因子的调查、关键林分因子的筛选、基准点的确定、备选主曲线模型的建立、主曲线模型的确定和评价、主曲线的绘制及曲线群的建立共9个步骤。3)逐步回归分析表明,林分密度是影响赤松赤枯病发生的关键林分因子,依据所提定量方法建立主曲线方程:Q=65. 61/(1+e-0. 001 5 x+2. 32),决定系数R2=0. 519 8,说明拟合方程较可靠,用该模型预估赤松赤枯病的病情指数时,平均预估误差是5. 35%。4)将赤枯病病基指数主曲线等比值拉伸得曲线群,即建立定量评价体系。体系中的5条曲线自下而上分别表示为:Ⅰ为极轻病害发生,Ⅱ为轻度病害发生,Ⅲ为中度病害发生,Ⅳ为重度病害发生,Ⅴ为特重度病害发生。【结论】赤松赤枯病病基指数主曲线模型和曲线群图可以定量评价赤松林的立地因子对赤枯病的潜在发生程度的作用等级,可为赤松纯林合理、有效的管理提供理论基础,将成为森林有害生物生态控制方法的重要组成部分。  相似文献   
59.
【目的】研究川西亚高山不同演替阶段森林群落的林下乔灌草层次谱系结构及对其驱动的生态学过程,为川西林区森林生物多样性保护与生态系统修复提供理论依据。【方法】利用川西亚高山原始暗针叶林(以下简称原始林)及其在1950—1969年和1970—1989年采伐后形成的天然次生林(以下简称次生林)的林下(不包括主林层,因其树种组成相对单一)乔灌草群落生态学调查资料,基于APGⅢ谱系框架,构建不同演替阶段森林群落的乔灌草系统发育树,选用广泛使用的谱系多样性指数——净亲缘指数(NRI)和最近类群指数(NTI),量化和评估不同演替阶段林型的乔灌草分层谱系结构及对其驱动的生态学过程。【结果】原始林亚林层物种组成谱系离散(NRI 0; NTI 0),即共存物种亲缘相疏,而原始林其他层次(草本层、灌木层与小乔木层)物种组成倾向于谱系聚集(NRI 0; NTI 0),即共存物种亲缘相近; 2个不同采伐年代形成的次生林的草本层和亚林层的谱系结构呈现出林型间相似但层次间相反的模式(草本层:谱系离散;亚林层:谱系聚集),灌木层和小乔木层则表现为层间相似但林型间相反的模式(1950—1969年:谱系聚集; 1970—1989年代:谱系离散);不同演替阶段森林群落的林下乔灌草NRI与NTI均极显著正相关(0.698≤R2≤0.769,P 0.001);不同演替阶段森林群落的林下乔灌草分层谱系结构(NRI与NTI)与物种多样性(香侬多样性指数H')的关联分析绝大部分未通过显著性检验,但林下乔灌草谱系结构与H'的局部多项式回归分析发现,原始林和1970—1989年采伐后次生林中的H'与NRI、H'与NTI的相关变化趋势表现出相似的波峰-波谷变化模式。【结论】川西亚高山原始暗针叶林及其采伐次生林的林下乔灌草层次谱系结构在层次间和林型间存在差异性。环境过滤是驱动原始林中草本层、灌木层和小乔木层物种谱系组成的主要生态学过程,竞争互斥则塑造亚林层中的物种谱系组成。次生林的林下乔灌草层次谱系结构及对其驱动的生态学过程大致与原始林相反,表现为环境过滤主导亚林层的谱系结构,竞争互斥主导草本层的谱系结构。川西亚高山不同演替阶段森林群落的林下乔灌草层次谱系多样性与物种多样性相互独立。  相似文献   
60.
基于MODIS数据的河套灌区遥感干旱监测   总被引:4,自引:3,他引:1  
基于MODIS数据,以河套灌区为研究对象,计算灌区2000—2018年作物主要生育期内(5—8月)4种遥感干旱指数、温度植被干旱指数(TVDI)、植被供水指数(VSWI)、植被状态指数(VCI)、温度状态指数(TCI),并分析了4种干旱指数与0~20cm土壤相对含水量、降水量、灌区引水量相关性以及4种干旱指数之间的相互关系。结果表明:经过相关分析,TVDI与土壤相对含水量的相关性优于其他3种遥感干旱指数;在灌溉水量较多的灌区,遥感干旱指数与降雨量相关性较小而与灌区引水量呈现一定的相关关系。本研究发现TVDI在河套灌区有着良好的适用性。此外,在干旱监测中综合利用多种干旱指数进行分析对提高监测精度,科学合理地预报旱情具有重要意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号