首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   2篇
农学   11篇
基础科学   5篇
  35篇
综合类   7篇
农作物   13篇
水产渔业   5篇
畜牧兽医   4篇
植物保护   3篇
  2020年   4篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   3篇
  2014年   4篇
  2013年   4篇
  2012年   8篇
  2011年   6篇
  2010年   3篇
  2009年   3篇
  2008年   9篇
  2007年   8篇
  2006年   9篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1995年   2篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
51.
This study assessed refined canola oil (CO) as a supplemental dietary lipid source for juvenile fall chinook salmon, Oncorhynchus tshawytscha, parr with respect to possible effects on their growth and osmoregulatory performance and body composition. Diets with equal protein ( 57%) and lipid ( 19%) content (dry weight basis) were supplemented with lipid from either anchovy oil (AO) or CO with AO so that CO comprised 0 (0CO), 11% (11CO), 22% (22CO), 33% (33CO), 43% (43CO) or 54% (54CO) of the dietary lipid content. Triplicate groups of juvenile chinook salmon were fed their prescribed diets for 104 days in freshwater (FW) and 31 days in seawater (SW) after a 4-day transition period. Dietary fatty acid compositions reflected the different proportions of AO and CO in the supplemental lipid. Diet treatment had no effect on fish growth, feed intake, feed efficiency, protein utilization, fish mortality or terminal whole body water and ash percentages. Whole body lipid percentages were higher in 11CO and 43CO fish than in 33CO fish and in 11CO fish versus 22CO fish. Whole body protein percentages were highest in 33CO, 43CO and 54CO fish and lowest in 0CO and 22CO fish. Terminal whole body fatty acid compositions were influenced strongly by the dietary fatty acid compositions. Haematocrit and muscle water percentages were not affected consistently and plasma Na+ and Cl concentrations were unaffected by diet treatment in FW or 24-h seawater challenges during FW residency. Also, diet treatment had no effect on the physiological parameters after SW residency. We conclude that dietary treatment had no effect on fish growth performance under our experimental conditions. Also, the dietary inclusion of CO neither facilitated nor impaired the transfer of chinook salmon parr to seawater. Thus, CO was found to be an excellent and cost-effective source of supplemental dietary lipid for culture of juvenile fall chinook salmon during freshwater residency.  相似文献   
52.
A pot experiment was conducted to appraise the differences in salinity tolerance in two canola cultivars (Shiralec and Dunkeld). The experiment was laid out in completely randomized design with five replications. Four salinity levels [0, 120, 150, and 180 mM sodium chloride (NaCl)] were used in this study. Salt stress caused a marked decrease in plant fresh and dry masses, photosynthetic pigments, and anthocyanins and increase in malondialdehyde (MDA), hydrogen peroxide (H2O2), and leaf phenolics. We have observed that salt tolerance ability of cv. Shiralec is greater than that of Dunkeld in terms of lower salt-induced decline in fresh and dry masses, photosynthetic pigments, lower MDA, H2O2 contents, and greater leaf phenolics.  相似文献   
53.
In the present study, integration of nitrogen (N) and zeolite on growth, photosynthesis, yield and yield components, nitrate reductase activity, and plant nutrient content on canola (Brassica napus L. cv. SLM046) was evaluated during two growing seasons (2010 and 2011) at East Azerbaijan Research Center for Agriculture and Natural Resources, Tabriz, Iran. The experiment was conducted as a 4?×?5 factorial design with three replications. Different levels of zeolite (0, 4, 8, and 12 ton ha?1) and nitrogen (N; 0, 150, 200, 250, and 300 kg ha?1) were added and mixed with soil thoroughly. According to combined analysis of variance, effect of year was significant only on silique number per plant, respiration rate, and iron (Fe) content. Also results indicated that N fertilizer increased plant height, silique number per plant, seed number per silique, 1000-seed weight, and finally seed yield. Similarly, zeolite increased yield and yield components whereas plant height was not affected by zeolite in the second year. Oil yield decreased due to N and zeolite application. In addition, photosynthesis and respiration improved on account of N and zeolite treatments. Nitrate reductase activity significantly was promoted by N and zeolite. Furthermore, micro- and macroelements were affected by N or zeolite application, so that N and zeolite decreased P content whereas N increased N, K, Fe, and zinc. In general our results demonstrated that zeolite application can increase canola growth and production, which may be through increasing N-use efficiency and improving soil physical characteristics.  相似文献   
54.
《Plant Production Science》2013,16(3):253-259
Abstract

Physical and chemical properties of vegetable oils and consequently their use, depend on the composition of fatty acids that accumulate in storage lipids during seed development. The objective of this study was to determine the combined effects of seed development stages and organic matter content of soil on oil fatty acid composition of canola. The experiments were carried out under field conditions on four soils with different organic matter contents. To evaluate seed oil content and fatty acid composition of canola, we harvested plants at six growth stages (GS), GS 75, GS 79, GS 83, GS 87, GS 92 and GS 99 including development of seed, ripening and senescence. The synthesis of oil and fatty acids were largely influenced by seed maturity and soil type. Seeds had maximum content of stearic and palmitic acids at GS 75 (50% of pods reach final size). The seed yield, oil content of seeds and oleic acid percentage of seed oil significantly increased with increasing rate of soil organic matter in canola. This study addresses the organic matter content in poor soils should be ameliorated not only to obtain higher crop yields but also quality production.  相似文献   
55.
C.R. Stockdale   《Livestock Science》2008,116(1-3):191-202
The objective of the experiment reported here was to establish the effect of canola meal supplements of different protein degradability on the performance of grazing dairy cows with different body condition scores (BCS) in early lactation, and to compare this with feeding a cereal grain supplement instead. The experiment included a total of 72 cows in six treatments in a 2 * 3 factorial design, incorporating two BCS at calving (4.1 and 5.6 units on an 8-point scale), and three early lactation pelleted supplements. The three pelleted supplements were 100% wheat (wheat supplement), 50% wheat and 50% untreated mechanically extracted canola meal (a rumen degradable protein supplement), and 50% wheat and 50% canola meal that had been subjected to additional heat and pressure (a rumen undegradable protein supplement). It was hypothesised that fat cows would perform best with the treated canola meal supplement, which provided most rumen undegradable protein, whereas the type of protein would not be important for thin cows, and neither would the type of supplemental energy. Cows grazed pasture after calving at a daily pasture allowance of 35–40 kg DM/cow and were offered 6 kg concentrates each day. Cows were fed these diets for 92 days on average, from calving until three weeks into the mating period. Both canola meal-based supplements resulted in higher (P < 0.05) daily milk production than the wheat supplement (33.3 and 34.0 v. 30.5 kg/cow) in both thin and fat cows. Body condition score at calving positively (P < 0.05) affected average milk yield (31.6 v. 33.7 kg/cow), however, there was a time × BCS × supplement interaction whereby the fatter cows benefited from the use of either of the canola meal supplements for a longer period than did the thin cows. Average milk fat concentrations were greater (P < 0.05) where the canola meal supplements were fed (39.3 and 39.6 v. 35.6 g/kg), and in fat cows relative to thin cows (40.0 v. 36.3 g/kg). Serum urea concentrations were significantly (P < 0.05) lower in cows fed wheat than in those fed either of the canola meal supplements (3.1 v. 4.3 and 4.2 mmol/L). Serum β-hydroxybutyrate concentrations were lowest (P < 0.05) where wheat pellets were fed, and highest (P < 0.05) where treated canola meal pellets were fed, and plasma glucose concentrations were highest with wheat and lowest with the treated canola meal pellets. Thus, the hypothesis was not supported by the results of this experiment.  相似文献   
56.
We conducted a 12-week feeding trial with largemouth bass (LMB) to examine the interactive effects of non-fish dietary proteins with different lipid sources on the performance of LMB (3.4 g ± 0.05 g). Practical diets contained poultry by-product meal (PBM) in place of fish meal on a digestible-protein basis, and 12% blood meal (BM). Diets were supplemented with 10% lipid as canola (CAN), chicken (CHK), CHK + MFO (50 : 50), menhaden fish oil (MFO) or CHK + CAN (50:50). A commercial trout diet (SC) was included as a positive control. Growth, survival, feed intake (FI), feed conversion ratio (FCR), protein efficiency ratio (PER), body composition, fatty acid composition of liver and muscle, hematological parameters and lysozyme and alternative complement activity (ACH50) were measured to assess diet effects. Weight gain (23.8 ± 1.8 g), survival (92 ± 4%), FI (44.3 ± 4.1 g), FCR (2.1 ± 0.1) and PER (1.3 ± 0.04) of LMB did not differ among the replacement diets. However, weight gain (38.5 ± 1.5), FI (53.9 ± 1.1), and PER (1.6 ± 0.1) of LMB fed the SC diet was higher and FCR (1.4 ± 0.1) was lower than that of fish fed the test diets. No signs of essential fatty acid deficiency were observed, although tissue concentrations of n-3 highly unsaturated fatty acids declined markedly in LMB fed diets without fish oil. Lymphocytes were elevated in fish fed diets with ≥ 7% n-3 fatty acids. Fish fed diets with 10% MFO or CHK + MFO had higher ACH50 than fish fed the diet with 10% CHK. There were no differences in serum lysozyme activity among fish fed the test diets. Hematocrit, hemoglobin, ACH50, and lysozyme activity were higher in fish fed the SC diet than in those fed the test diets. Regardless of lipid source, the ACH50 and lysozyme activity were greatly reduced in LMB fed PBM diets compared to LMB fed diets with 30% fish meal in a previous trial. The amino acid composition of the PBM was similar to that of fish meal. However, the availability of some essential amino acids from PBM to LMB may have been limited, and poor diet palatability caused by BM also may have reduced feed intake and performance of LMB.  相似文献   
57.
不同N效率甘蓝型油菜对N肥的响应   总被引:1,自引:0,他引:1  
采用盆栽方法,在0、0.05、0.1、0.15、0.2 g/kg 5个N水平下对甘蓝型油菜13号(N高效基因型)和4号(N低效基因型)的N效率、N吸收效率、N利用效率,生物学产量、籽粒产量以及农学性状进行了比较研究。结果表明,在N水平0~0.2 g/kg,油菜N效率和吸收效率随N水平增加呈降低趋势,N利用效率则随N水平增加呈先增加后降低趋势;N高效基因型的N效率和吸收效率比N低效基因型对N响应更敏感。N高效与低效基因型的N效率、N吸收效率的差异在N水平较低时更显著。N水平对不同N效率油菜的生长具有相似的影响,N高效基因型的单株产量、根系生物量、地上部分生物量、总生物量、各器官生物量占总生物量的比例、单株角果数、千粒质量、株高、第一分枝高度和一级分枝数等随N水平变化而变化的规律均与N低效基因型的基本一致。N高效基因型的单株产量、根系生物量、地上部生物量、总生物量、根系、茎叶和籽粒占总生物量的比例、根冠比、收获指数、单株角果数、角果粒数、株高、一级分枝数和茎粗均高于N低效基因型,角果皮占总生物量的比例、千粒质量和第一分枝高度低于N低效基因型,其差异显著性随N水平变化而不同。  相似文献   
58.
Compared to other crops, Brassicas are generally considered to grow well in soils with low P availability, however, little is known about genotypic differences within Brassicas in this respect. To assess the role of rhizosphere properties in growth and P uptake by Brassicas, three Brassica genotypes (mustard, Brassica juncea cv Chinese greens and canola, Brassica napus cvs Drum and Outback) were grown in an acidic soil with low P availability at two treatments of added P: 25 and 100 mg P kg−1 as FePO4 (P25 and P100). The plants were harvested at the 6-leaf stage, at flowering and at maturity. Shoot and root dry weight (dry weight) and root length increased with time and were lower in P25 than in P100. In P25, shoot dry weight was lowest in Outback and highest in Chinese greens. In the P100 treatment, Chinese greens had a higher shoot dry weight than the two canola cultivars. Chinese greens had a lower root dry weight and root length at flowering and maturity than the canola genotypes in both P treatments. Irrespective of P treatment, shoot P concentration was lower in Chinese greens than in the two canola genotypes. Specific P uptake (μg P m−1 root length) decreased with time. In P25, Chinese greens had the lowest specific P uptake at the 6-leaf stage but it was higher than in the two canola genotypes at flowering and maturity. In P100, Outback had the lowest specific P uptake. Available P in the rhizosphere (resin P) decreased over time with the greatest decrease from the 6-leaf stage to flowering. In P25, resin P in the rhizosphere was greatest in Chinese greens at the 6-leaf stage and flowering and smallest in Outback at flowering. Microbial P and acid phosphatase activity changed little over time, were not affected by P treatment and there were only small differences between the genotypes. The rhizosphere microbial community composition [assessed by fatty acid methyl ester (FAME) analysis] of Outback and Chinese greens differed from that of the other two genotypes at the 6-leaf stage and flowering, respectively. At maturity, all three genotypes had distinct microbial communities. Plant traits such as production of high biomass at low shoot P concentrations as well as the capacity to maintain high P availability in the rhizosphere by P mobilisation can explain the observed differences in plant growth and P uptake among the Brassica genotypes.  相似文献   
59.
This research was conducted to use spectroscopic analysis to evaluate the effect of biochar and compost application on heavy metal immobilization during the canola plants grown in the contaminated soil using X-Ray Diffraction (XRD), Energy Dispersive spectroscopy by X-rays (EDX) and Fourier Transmission Infrared Spectroscopy (FTIR). The results showed that the cadmium (Cd) and lead (Pb) concentrations in the root and shoot of canola plants significantly decreased with the addition of rice straw compost (RC) and biochar (RB) to contaminated soil. The use of spectroscopic analysis observed the precipitation, inner-sphere complex reaction, and electrostatic attraction are the dominating mechanisms for heavy metals immobilization with organic amendments. Our results indicate that the rice straw biochar and compost can immobilize heavy metals and improve dry weight of canola plants. Moreover, the spectroscopic analysis is a simple method and can be effective to understand the mechanism of heavy metals immobilization.  相似文献   
60.
An 8-yr (1998–2005) field experiment was conducted on a Gray Luvisol (Boralf) soil near Star City, Saskatchewan, Canada, to determine the effects of tillage (no-tillage – NT and conventional tillage – CT), straw management (straw retained – R and straw not retained – NR) and N fertilizer (0, 40, 80 and 120 kg N ha−1, except no N to pea (Pisum sativum L.) phase of the rotation) on seed and straw yield, mass of N and C in crop, organic C and N, inorganic N and aggregation in soil, and nitrous oxide (N2O) emissions for a second 4-yr rotation cycle (2002–2005). The plots were seeded to barley (Hordeum vulgare L.) in 2002, pea in 2003, wheat (Triticum aestivum L.) in 2004 and canola (Brassica napus L.) in 2005. Seed, straw and chaff yield, root mass, and mass of N and C in crop increased with increasing N rate for barley in 2002, wheat in 2004 and canola in 2005. No-till produced greater seed (by 51%), straw (23%) and chaff (13%) yield of barley than CT in 2002, but seed yield for wheat in 2004, and seed and straw yield for canola in 2005 were greater under CT than NT. Straw retention increased seed (by 62%), straw (by 43%) and chaff (by 12%) yield, and root mass (by 11%) compared to straw removal for barley in 2002, wheat in 2004, and seed and straw yield for pea in 2003. No-till resulted in greater mass of N in seed, and mass of C in seed, straw, chaff and root than CT for barley in 2002, but mass of N and C were greater under CT than NT for wheat in 2004 and for canola in 2005 in many cases. Straw retention had greater mass of N and C in seed, straw, chaff and root in most cases compared to straw removal for barley in 2002, pea in 2003 and wheat in 2004. Soil moisture content in spring was higher under NT than CT and with R than NR in the 0–15 cm depth, with the highest moisture content in the NT + R treatment in many cases. After eight crop seasons, tillage and straw management had no effect on total organic C (TOC) and N (TON) in the 0–15 cm soil, but light fraction organic C (LFOC) and N (LFON), respectively, were greater by 1.275 Mg C ha−1 and 0.031 Mg N ha−1 with R than NR, and also greater by 0.563 Mg C ha−1 and 0.044 Mg N ha−1 under NT than CT. There was no effect of tillage, straw and N fertilization on the NH4-N in soil in most cases, but R treatment had higher NO3-N concentration in the 0–15 cm soil than NR. The NO3-N concentration in the 0–15, 15–30 and 30–60 cm soil layers increased (though small) with increasing N rate. The R treatment had 6.7% lower proportion of fine (<0.83 mm diameter) and 8.6% greater proportion of large (>38.0 mm) dry aggregates, and 4.5 mm larger mean weight diameter (MWD) compared to NR treatment. This suggests a lower potential for soil erosion when crop residues are retained. There was no beneficial effect of elimination of tillage on soil aggregation. The amount of N lost as N2O was higher from N-fertilized (580 g N ha−1) than from zero-N (155 g N ha−1) plots, and also higher in CT (398 g N ha−1) than NT (340 g N ha−1) in some cases. In conclusion, retaining crop residues along with no-tillage improved some soil properties and may also be better for the environment and the sustainability of high crop production. Nitrogen fertilization improved crop production and some soil quality attributes, but also increased the potential for NO3-N leaching and N2O-N emissions, especially when applied in excess of crop requirements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号