首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   2篇
农学   11篇
基础科学   5篇
  35篇
综合类   7篇
农作物   13篇
水产渔业   5篇
畜牧兽医   4篇
植物保护   3篇
  2020年   4篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   3篇
  2014年   4篇
  2013年   4篇
  2012年   8篇
  2011年   6篇
  2010年   3篇
  2009年   3篇
  2008年   9篇
  2007年   8篇
  2006年   9篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1995年   2篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
21.
No information is available on the role of particle size of canola (Brassica napus) residue in altering C mineralization and nutrient (N, S) cycling in soil. We studied decomposition of canola residue (at 20±1 °C temperature and 10% moisture (w/w) for 6 months to elucidate the effect of its particle size (<1, 5-7, and 20-25 mm) on dynamics of C, N and S turnover following incorporation into a nutrient-poor sandy soil.Averaged over time, particle size of canola residue did not significantly affect C mineralization rate, the size of microbial-C and microbial-N pools, or the extent of CaCl2-extractable S immobilization, but altered the extent of mineral-N immobilization and water-soluble organic C (W-SOC) depletion. A rapid decrease in C mineralization rate in the first week matched the rapid depletion of W-SOC, especially for the <1 mm residue treatment. Over 6 months, mineral-N in the amended soils rarely increased beyond the starting level (0.8-1 mg kg−1 soil for all the treatments), whereas nitrate-N increased 19-fold in the non-amended soil. This suggests an occurrence of strong N immobilization in the amended soils; such immobilization was high for the <1 mm residue treatment. On a cumulative basis, 33-35% of C added in canola residues to the soil was respired in 6 months. The microbial-C and microbial-N pools peaked by day 4 for all the residue treatments (compared to time zero, 58-122% increase for microbial-C and 36-57% for microbial-N). Averaged over time, amended soils contained approx. 40% more microbial-C and microbial-N than the non-amended soil. An addition of canola residue (regardless of the size) to soil increased the extractable S significantly (3.4-fold) on day 0; this initially increased S level decreased by one-third over 6 months. In conclusion, particle size of canola residue did not affect temporal pattern of C and S mineralization in a nutrient-poor sandy soil, but altered N cycling.  相似文献   
22.
The recent adoption of conservation farming systems in the semi-arid Canadian prairies opens up the possibility of replacing the traditional fallow period with non-cereal crops (oilseeds, legumes). However, information on changes to soil water regimes by inclusion of these crops, especially in combination with zero tillage, is sparse. A study was initiated in 1984 on a sandy clay loam soil at Lethbridge, Alberta, to investigate the performance of winter wheat (Triticum aestivum L.) under conventional, minimum and zero tillage in monoculture and in 2-year rotations with fallow, canola (Brassica campestris L.) or lentils (Lens culinaris Medic.)/flax (Linum usitatissimum L.). Conventional tillage in the Lethbridge region is shallow cultivation (10 cm) with a wide-blade (sweep) cultivator. Continuous cropping greatly depleted soil water reserves, resulting in some crop failures. Averaged over 10 years, available water for establishment of winter wheat in fall was least after canola (45 mm), followed by continuous winter wheat (59 mm), lentils/flax (74 mm) and fallow (137 mm). In this semi-arid region, the effect of rotation on soil water was much greater than that of tillage. Zero tillage had relatively little impact on available water to 1.5 m depth. However, once the experiment had been established for 6–7 years, available water in the 0–15 cm depth under winter wheat in spring was greatest under zero tillage. Precipitation storage efficiency during the fallow year was generally unaffected by tillage system.  相似文献   
23.
农业废弃物制备的生物质炭对红壤酸度和油菜产量的影响   总被引:6,自引:0,他引:6  
李九玉  赵安珍  袁金华  徐仁扣 《土壤》2015,47(2):334-339
利用自行研制的生物质炭化炉在田间条件下制备花生秸秆炭和油菜秸秆炭,采集秸秆气化站产生的稻壳炭,研究了这3种生物质炭对酸性土壤的改良效果和对油菜产量的影响。结果表明:施用稻壳炭、花生秸秆炭和油菜秸秆炭均可提高土壤p H,降低土壤交换性酸含量,效果随施用量的增加而增强。生物质炭对酸性土壤的改良效果主要决定于其本身的含碱量,施用花生秸秆炭和油菜秸秆炭显著增加土壤交换性盐基阳离子、有效磷、有效阳离子交换量和盐基饱和度,并提高油菜籽产量。田间条件下施用花生秸秆炭和油菜秸秆炭3年后土壤p H仍明显高于对照处理,说明生物质炭对土壤酸度的改良具有持续性。因此,花生秸秆炭和油菜秸秆炭是优良的酸性土壤改良剂。  相似文献   
24.
ABSTRACT

Environmental stress strongly affects the fundamental processes of plant biology. This study was to investigate the growth, yield, carbon (C) and nitrogen (N) assimilation and partitioning of two canola (Brassica napus L.) cultivars (Qinyou 10 and Ningza 1838) under low and high soil salt-ion concentration levels (LSSC and HSSC) of 2.512 and 4.722 g kg?1, respectively. There was no cultivar effect on agronomic traits other than the 1000-seed weight which was not affected by soil salinity. The increase of soil salt-ion concentration greatly reduced plant height, the numbers of primary branches, pods per plant or per hectare and the resultant seed yield. The C and N accumulations for whole plant and in different organs decreased significantly as soil salinity increased. The suppressive effects of high soil salinity were more strongly on C accumulation than N accumulation, and more obviously in shells and seeds than in roots, stems and leaves. As soil salinity increased, the C and N partitioning in vegetative organs of roots, stems, and leaves was enhanced greatly, while the C partitioning in shells and seeds and the N partitioning in seeds decreased significantly, suggesting an inhibition of C and N transporting from vegetative organs to reproductive organs. Our study revealed the high soil salinity profoundly suppressed canola growth and yield formation, by reducing C and N accumulations in all organs and alleviating C and N partitioning in reproductive organs.  相似文献   
25.
Plants of the Brassicaceae contain glucosinolates, the hydrolysis products of which inhibit the growth of many soil-borne fungi that cause plant disease. However, amending soil with green manures of these plants gives inconsistent control of several soil-borne diseases, including those caused by Rhizoctonia solani. To identify factors that contribute to this inconsistency we investigated, in the laboratory and in pot experiments in the glasshouse, the saprophytic behaviour of R. solani AG2-1 (ZG5) in a sandy soil amended with various green manures. Fresh material from either Brassica napus var. Karoo, B. napus B1, B. napus B2, B. nigra, Diplotaxis tenuifolia (a brassicaceous weed) and the non-Brassicaceae species, oat (Avena sativa) or lupin (Lupinus angustifolius) was used at 10 or 100 g of fresh material kg−1 of dry soil in Lancelin sand. At 100 g kg−1 the volatiles of all green manures reduced the hyphal growth of R. solani, except for B. napus B1. D. tenuifolia at 100 g kg−1 inhibited the growth and sclerotial formation of R. solani. Most green manures at 10 g kg−1, and at 40% water holding capacity, stimulated the growth of R. solani for up to 3 months and increased the activity of other microbes. R. solani infected the brassicaceous plants when growing and colonized the residues mixed with soil at 10 g kg−1. This inoculum increased the severity of damping-off in canola, by 27%. Disease was particularly severe when the green manure species, except D. tenuifolia and oat, were grown in situ and residues returned to the pot from which they came, before sowing canola. There is a potential hazard in applying green manures of Brassica species as their residues can, under certain conditions, support the saprophytic activity of R. solani which increases damping-off in canola sown in the amended soils.  相似文献   
26.
不同灌水量对油菜产量的影响   总被引:1,自引:0,他引:1  
基于对西藏拉萨地区油菜水分与产量的关系和需水规律进行研究,2013年在西藏拉萨节水灌溉试验站进行了油菜节水灌溉制度试验,通过设计田间不同灌水处理试验,结果表明,西藏拉萨地区的油菜的最佳灌溉定额在230—250m^3/亩之间,油菜灌水量250m^3/亩产量最高为181.63kg,油菜全生育期需水量一般在430-500m^3/亩。  相似文献   
27.
Oilseed and pulse crops have been increasingly used to replace conventional summer fallow and diversify cropping systems in northern high latitude areas. The knowledge of water use (WU) and its distribution profile in the soil is essential for optimizing cropping systems aimed at improving water use efficiency (WUE). This study characterized water use and distribution profile for pulse and oilseed crops compared to spring wheat (Triticum aestivum L.) in a semiarid environment. Three oilseeds [canola (Brassica napus L.), mustard (Brassica juncea L.) and flax (Linum usitatissimum L.)], three pulses [chickpea (Cicer arietinum L.), dry pea (Pisum sativum L.) and lentil (Lens culinaris Medik.)], and spring wheat were seeded in removable 100 cm deep × 15 cm diameter lysimeters placed in an Aridic Haploboroll soil, in southwest Saskatchewan in 2006 and 2007. Crops were studied under rainfed and irrigated conditions where lysimeters were removed and sampled for plant biomass and WU at various soil depths. Wheat yields were greater than pulse crop yields which were greater than oilseed yields, and WUE averaged 4.08 kg ha−1 mm−1 for pulse crops, 3.64 kg ha−1 mm−1 for oilseeds, and ranged between 5.5 and 7.0 kg ha−1 mm−1 for wheat. Wheat used water faster than pulse and oilseed crops with crop growth. Pulse crops extracted water mostly from the upper 60 cm soil depths, and left more water unused in the profile at maturity compared to oilseeds or wheat. Among the three pulses, lentil used the least amount of water and appeared to have a shallower rooting depth than chickpea and dry pea. Soil WU and distribution profile under canola and mustard were generally similar; both using more water than flax. Differences in WU and distribution profile were similar for crops grown under rainfall and irrigation conditions. A deep rooting crop grown after pulses may receive more benefits from water conservation in the soil profile than when grown after oilseed or wheat. Alternating pulse crops with oilseeds or wheat in a well-planned crop sequence may improve WUE for the entire cropping systems in semiarid environments.  相似文献   
28.
29.
Winter varieties of canola (Brassica napus L.) are susceptible to winterkill. Measurements of photosynthetic efficiency and survival of field-grown canola were used to evaluate the effect of chloride (Cl), potassium (K), and phosphorus (P) nutrition on winter field survival in northwestern USA. In a growth chamber experiment, effects of calcium chloride (CaCl2), potassium chloride (KCl), ammonium chloride (NH4Cl), or sodium chloride (NaCl) on the ability to tolerate subfreezing temperatures were evaluated. In the field, overwinter survival was higher, and greater photosynthetic activity continued later into the autumn in plants with increased sap Cl concentrations. In the greenhouse experiment, significantly greater survival occurred in plants with higher sap Cl concentrations, but only in plants that had not been cold acclimated. These results suggested that a greater concentration of chloride ion in the sap of canola plants is related to an increased ability to tolerate subfreezing temperatures, but other processes resulting from cold acclimation may largely obscure this effect.  相似文献   
30.
The seed (grain) yield increases (responses) and concentration of oil in seed responses of canola (Brassica napus L.) to applications of fertilizer nitrogen (N), as urea (46% N), was measured in eight field experiments in south-western Australia (SWA). Nitrogen was applied at five different times of application, either at sowing or at three to four weekly intervals until 12–16 weeks (0, 3, 6, 9, 12 or 0, 4, 8, 12, 16) after seedling emergence. Canola, sown in late May to early June, was grown on a range of soil types in different locations of SWA. The greater the amount of N applied and the closer N was applied to the sowing of the canola seed usually gave the largest seed yield increase at both higher rainfall sites (> 500 mm) and lower rainfall sites (<350 mm). Maximum seed yield of canola were reached within nine weeks after seedling emergence. The exception was for a sandy soil (Fluventic Lithic Xerochrept; Brown Tenosol) at Narrogin where applications of N at six, nine, or 12 weeks after emergence gave higher yields compared to N applied earlier mainly due to N leaching in June and July.

The amount of N required for 90% of maximum seed (N90%Y) yield ranged from five to 58 kg N ha?1 with the amount depended on location and growing season. For six of the eight sites the higher amounts of N for N90%Y were required at sowing and three weeks after emergence. Similarly, N use efficiency (NUE, kg grain produced kg N applied?1) tended was highest for either the N applied at sowing or within three to four weeks after emergence of seedlings. The exception was for a sandy soil at Narrogin where applications of N at six, nine, or 12 weeks after emergence gave higher NUE compared to N applied earlier. N use efficiency decreased as the amount of N increased for all times of N application. Generally, the amount of N applied decreased the oil concentration of canola seed at each time of application. However, the effect of the time of application of N fertilizer on the decrease in oil concentration of canola seed was largest with the highest N level applied at 12 or 16 weeks after seedling emergence. The percentage the oil concentrations decreased as the amount of N applied increased varied with location and growing season. Further research work is required to elucidate the interaction between the growing season, possible rainfall and temperature, and the effects of N on grain yield and oil concentration in seed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号