首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   301篇
  免费   22篇
  国内免费   152篇
林业   91篇
农学   20篇
基础科学   57篇
  200篇
综合类   97篇
农作物   5篇
水产渔业   1篇
畜牧兽医   1篇
园艺   1篇
植物保护   2篇
  2024年   2篇
  2023年   5篇
  2022年   17篇
  2021年   21篇
  2020年   22篇
  2019年   24篇
  2018年   22篇
  2017年   34篇
  2016年   37篇
  2015年   28篇
  2014年   23篇
  2013年   19篇
  2012年   32篇
  2011年   23篇
  2010年   29篇
  2009年   38篇
  2008年   18篇
  2007年   24篇
  2006年   18篇
  2005年   12篇
  2004年   5篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1995年   3篇
  1993年   1篇
排序方式: 共有475条查询结果,搜索用时 31 毫秒
41.
为了探索利用棉花秸秆制备高质量生物炭的有效途径,比较了不同炭化工艺条件(热解温度、保留时间和原料粒径)下所得生物炭的理化特性。pH值测定结果表明,生物炭呈碱性,且随着热解温度的上升,生物炭的pH呈明显的上升趋势,从300℃下的8.18上升至700℃下的11.10。扫描电镜(SEM)观察结果表明,热解工艺对生物炭表面孔状大小和分布具有显著影响。红外扫描结果表明,生物炭表面具有丰富的官能团,且随着热解温度的升高,-OH、-C=C-和-C-H吸收峰的强度均有所减弱。比表面积(BET)测试结果表明,随着热解温度的上升,比表面积及总孔容均明显上升;随着保留时间的上升和粒径的减小,比表面积及总孔容略有上升。  相似文献   
42.
ZSM-5催化生物质三组分和松木热解生物油组分分析   总被引:1,自引:1,他引:0  
为了更清晰地研究三大组分(纤维素、木聚糖、木质素)在介孔ZSM-5参与下的催化热解过程,该研究首先对生物质的三大基本组分和云南松木粉进行热解,然后在介孔ZSM-5催化剂存在的条件下对微晶纤维素、木聚糖、碱性木质素三大组分和云南松进行催化热解。采用气质联用仪对生物油的化学组分进行分析。通过对比ZSM-5参与前后的生物油的主要化学组分的变化,对催化剂的催化机理进行探究。研究结果表明,催化热解过程中,介孔ZSM-5将纤维素直接热解得到的β-D阿洛糖、糠醛、3-丙基戊二酸和2,4-戊二烯酸转化为1-甲基萘、2,6-二甲基萘,纤维素催化热解得到的生物油中的芳烃含量为63.89%。半纤维素催化热解过程中,催化剂将生物油中的糠醛从67.78%降低为2.66%,有效提高芳烃化合物,包括萘、2-甲基萘的含量,催化热解后得到的生物油中总芳烃含量达到36.81%。木质素催化热解过程中,介孔ZSM-5有效降低生物油中2,6-二叔丁基对甲酚的量(从82.33%降至77.97%),并大幅地提高1,8-二甲基萘和1,7-二甲基萘的量,生物油中总芳烃相对含量达到14.14%。云南松催化热解过程中,催化剂有效降低云南松直接热解得到生物油中2-甲氧基-4-甲基苯酚和(Z)-异丁子香酚的含量,并将芳烃化合物总量提高到53.99%(主要是1-甲基萘、1-亚甲基-1氢-茚和2,6-二甲基萘)。随着催化剂使用次数的增加,生物油中含氧化合物相对含量增加,烃类化合物的相对含量明显降低,从53.99%降至43.32%,元素分析结果表明生物油中的碳含量逐渐减少,氧含量逐渐增加。但是,催化剂经过焙烧再生后,催化活性基本完全恢复。  相似文献   
43.
工业碱木素热裂解特性研究   总被引:4,自引:0,他引:4  
用热重分析法和热解色谱质谱联用技术(Py-GC-MS)对工业碱木素热解行为进行了初步研究,分析了工业碱木素在不同升温速率下的热分解特性。结果表明,工业碱木素的热解过程主要分为4个阶段,在200℃以下的低温区和300~500℃的中温区各有1个强烈失重峰。工业碱木素热裂解产物非常复杂,Py-GC-MS分析表明,在300℃下的热解产物中,以源于工业碱木素的聚糖热解产物为主,含有一定量的低分子木素热解构产物;在450℃下的热解产物中,以木素大分子的热解构产物为主,例如各种酚类化合物、愈创木基丙酮等酮类化合物及源于木素-碳水化合物复合体的阿魏酸等化合物。   相似文献   
44.
木材热解及金属盐催化热解动力学特性研究   总被引:1,自引:0,他引:1  
通过不同升温速率下杉木的热重实验,对比分析钾盐催化杉木热裂解动力学特性.借助于DTG重叠峰的分离以及分布活化能模型计算不同转化率条件下的反应活化能,得到钾盐对生物质中半纤维素的低温段分解、纤维素的整个热裂解过程存在催化效果,使失重曲线(200~270℃)肩状峰衰退乃至消失,并促进脱水和交联反应,导致焦炭产率的提高和残碳的有序化,体现为焦炭产量从16.3%提高到25.3%(质量分数),而且80%转化率后残碳分解活化能的急剧提高.基于三组分平行反应机理,采用非线性回归法拟合计算杉木热解动力学参数,得到纤维素的热裂解基本上属于一阶反应,而且钾盐对纤维素和半纤维素的热裂解具有较大程度促进,活化能分别从148.12和235.43kJ/mol下降到108.84和171.41kJ/mol,但对木质素的催化影响并不显著.  相似文献   
45.
对6种典型废弃生物质(锯末、稻壳、纸屑、橱芥、废塑料、废橡胶)进行热重实验分析及热解动力学分析;同时,利用TG/DTG曲线分析了它们的基本热解特性,包括热解区间、最大热解速率的温度、不同加热速度等对热解进程的影响等;通过热解动力学分析,给出了基本的热解动力学方程,研究了各种原料在不同升温速率下的热解动力学参数,为废弃生物质制取生物质能源技术提供基础数据.  相似文献   
46.
生物质热解油的化学组成及其研究进展   总被引:1,自引:0,他引:1  
综述了生物质热解油的研究现状及应用前景,重点介绍了生物质热解油化学组成的分析方法,总述了生物质热解油的物化性质,进而归纳了几种常见生物质热解油,特别是城市污水污泥热解油、城市垃圾热解焦油、工业废油热解油、林业废料热解生物油和农作物热解油的化学组成及其性质;讨论了生物质热解油常见的改性办法,如催化加氢处理、沸石分子筛处理、催化裂解和乳化工艺的过程及其特点;展望了生物质热解油的研究前景,提出了相关建议。  相似文献   
47.
竹材居里点快速热裂解研究   总被引:1,自引:0,他引:1  
利用JHP-5型居里点裂解仪,在358、445、590和670℃4种居里点温度下快速热裂解竹材,通过GC-MS在线分析裂解产物。结果表明竹材居里点裂解液相主要产物为糠醛和酚类物质,其中445℃时2,3-二氢苯并呋喃的相对含量多达21%,并且液相主要产物的相对含量随温度的提高呈现先增后减的变化规律,裂解温度为445~590℃更利于液相产物的生成。裂解机理分析得知糠醛是由纤维素和半纤维素裂解产生,而酚类物质则来源于木质素。  相似文献   
48.
玉米芯的热解特性及气相产物的释放规律   总被引:2,自引:4,他引:2  
为了全面掌握不同热解条件下玉米芯的热解特性及热解过程中气相产物随温度变化的释放规律,深刻理解玉米芯的热解行为及反应机理,该文采用热重-质谱联用技术对玉米芯进行了氮气气氛下的热解特性试验研究,对比研究了不同升温速率(5、10、20℃/min)、不同粒度(74、154、280、450μm)、不同气体流速(30、60、90 m L/min)等因素对玉米芯热解行为的影响,发现非等温失重过程可分为4个阶段:失水、预热解过渡、挥发分析出和炭化阶段。通过质谱分析研究了热解过程小分子气相产物(CO、CO2、CH4、O2、H2、H2O)的释放规律,并计算了挥发分释放指数。升温速率升高,热解反应越易进行;在粒度小于450μm范围内,试样热解的总失重率随粒度的增大而增加,而且颗粒越大,挥发分产物开始逸出的温度越低。粒度为154~450μm的试样的热解过程主要受颗粒内部热传递影响,而粒度154μm的试样的热解主要受内在反应动力学速率控制;随着气体流速升高,试样热解的总失重率和初始温度增大,但增幅很小,最大失重速率对应的温度也有向高温段移动的趋势。利用Coats-Redfern方法计算出玉米芯的热解动力学参数,说明玉米芯热解的挥发分析出阶段可用单段一级反应描述。该研究对于优化以玉米芯为原料的热化学转化工艺参数和提高燃料产物的产量与品质等具有重要意义,对于设计和开发高效的生物质能转化设备也可提供参考。  相似文献   
49.
为探讨高温堆肥中氮素损失的有效控制技术,以2种不同热解温度制备的稻壳生物质炭为堆肥添加剂,与羊粪、食用菌渣混合,进行了43 d的堆肥试验。设置了3 个处理,羊粪与食用菌渣质量比9:1混合体作为预备物料,在预备物料上分别添加450、650 ℃热解的生物质炭(占预备物料质量百分比15%)为B1、B2处理,在预备物料上添加未热解的稻壳(与生物质炭等体积)为CK处理。监测了堆肥体的温度、NH3挥发、N2O排放、pH值等参数变化动态,分析了不同热解温度生物质炭在堆肥中的保氮效果。结果表明,B1、B2处理促进了堆肥初期的温度快速上升,堆肥体初次升温至55 ℃所需时间分别较CK 缩短了2、6 d,B2 处理的促升温、增温效应优于B1 处理;堆肥43 d 后,CK、B1 与B2处理的NH3挥发累积量分别为378.12、117.22、94.16 mg/kg,N2O排放累积量分别为13.9、26.3、23.6 mg/kg,氮素损失率分别为47.8%、34.1%,30.5%;B1、B2处理增加了堆肥体N2O排放,降低了堆肥体NH3挥发,整个堆肥过程中N2O排放累积量远小于NH3挥发累积量,添加生物质炭对堆肥过程氮素损失表现为正向的减控作用,B1、B2处理的氮素损失率分别较CK处理降低了28.6%、36.19%,B1、B2处理之间差异不显著(P>0.05)。综合堆温快速上升、氮素损失控制等指标,B2处理对羊粪堆肥过程保氮效果优于B1处理;堆肥工程中应用生物质炭减控氮素损失及提高堆肥质量,优选热解温度650 ℃制备的生物质炭。  相似文献   
50.
Curie-point pyrolysis-gas chromatography mass spectrometry with N-selective detection was used to characterize the structure of organic N compounds in four mineral soils. The technique was found suitable for the fast, sensitive, and highly specific identification of N-containing pyrolysis products from whole soils with total N contents between 0.08 and 0.46%. In order to optimize the methodology, one agricultural soil was pyrolyzed at final temperatures of 573, 773, and 973 K. Almost no chemical alterations to identifiable pyrolysis products were observed when the final pyrolysis temperature was increased from 573 to 973 K. More than 50 N-containing pyrolysis products were identified, and were divided into compound classes chracterized by specific molecular-chemical structures. These included pyrroles, imidazoles, pyrazoles, pyridines, pyrimidines, pyrazines, indoles, quinolines, N derivatives of benzene, alkyl nitriles, and aliphatic amines. Three additional soil samples different in origin and N content were analyzed at 773 K and each showed a specific thermosensitive N-selective chromatogram. Many N-containing pyrolysis products were identified in all samples, which indicated general qualitative regularities in the thermal release of N-containing pyrolysis products from the four soils. In the pyrolyzates of the investigated soils a number of compounds were identified, which is usually not detectable in pyrolysis-gas chromatography spectrometry analyses with N-selective detection of plants and microorganisms. Among these were N derivatives of benzene and long-chain alkyl nitriles, which appear to be soil-specific and suggest significant transformations of organic N in soils. Thus, our results contribute to a better understanding of the molecular-chemical structure of unknown N.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号