首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   2篇
  国内免费   23篇
林业   4篇
农学   1篇
基础科学   7篇
  61篇
综合类   14篇
畜牧兽医   4篇
植物保护   27篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   7篇
  2019年   8篇
  2018年   13篇
  2017年   9篇
  2016年   12篇
  2015年   10篇
  2014年   8篇
  2013年   8篇
  2012年   6篇
  2011年   6篇
  2010年   2篇
  2009年   5篇
  2008年   8篇
  2007年   6篇
  2006年   1篇
  2004年   1篇
  2003年   2篇
  2001年   2篇
排序方式: 共有118条查询结果,搜索用时 15 毫秒
111.
C波段多极化SAR反演土壤水分研究   总被引:3,自引:0,他引:3  
[目的]研究不同极化方式下雷达后向散射系数与地表土壤含水量之间的关系.[方法]在分析不同地表微波散射模型基础上,选用合适的植被散射模型结合多极化雷达数据从雷达总的后向散射中去除植被影响,建立土壤后向散射系数与土壤含水量的关系.[结果]拟合HH极化、HV极化雷达观测数据与土壤水分数据,相关系数为HH极化R2=0.552 3,HV极化R2=0.357 9.[结论]微波具有全天候、穿透性以及不受云层影响的独特物理机制,使其在研究大尺度土壤水分反演时效果较好,相比较HV极化,HH极化雷达影像数据更适合干旱区作物植被覆盖地区土壤水分监测.  相似文献   
112.
地物光谱特征是遥感机理的重要内容,也是遥感应用研究的重要依据;既是传感器波段选择和设计的依据,又是对遥感数据进行解译及各种定量分析的基础。本研究以深处内陆盆地、典型的干旱区于田绿洲作为研究区,利用便携式野外光谱仪,对研究区内主要植被地物进行了地面调查及反射光谱曲线测量;分析了植被的反射光谱曲线,并对植被光谱进行了导数、"红边"效应等研究,对比了健康植被和非健康植被光谱特征的差别,对研究区内的其他典型地物光谱特征也进行了分析。所得结论对于干旱区地物光谱特征基础研究具有重要意义。  相似文献   
113.
小波变换耦合CARS算法提高土壤水分含量高光谱反演精度   总被引:4,自引:3,他引:1  
为实现干旱地区土壤水分含量(soil moisture content,SMC)的快速监测,该文以渭干河-库车河绿洲为靶区,采用小波变换(wavelet transform,WT)对反射光谱进行1~8层小波分解,通过相关性分析确定最大分解层数,再通过竞争性自适应重加权(competitive adaptive reweighted sampling,CARS)滤除冗余变量,筛选出与SMC相关性较好的波长变量,并叠加各层特征光谱的优选波长变量作为最优变量集,用偏最小二乘回归(partial least squares regression,PLSR)构建土壤水分含量预测模型并进行分析.结果显示:1)小波分解过程中,土壤反射率与SMC的相关性不断增强,到小波变换第6层分解(L6)处达到最高,因此小波变换最大分解层数为6层分解;2)通过对土样进行WT-CARS耦合算法筛选出变量,得出的最优变量集包括400~500、1 320~1 461、1 851~1 961、2 125~2 268 nm区域之间共131个波长变量;3)相对于全波段预测模型,各层特征光谱的CARS优选变量预测模型的精度均高,并且基于最优变量集的预测模型的精度最高,该模型的建模集均方根误差0.021、建模集决定系数0.721、预测集均方根误差0.028、预测集决定系数0.924、相对分析误差2.607.说明WT-CARS耦合算法使其在建立模型时尽可能少地损失光谱细节、较为彻底的去除噪声,同时还能对无信息变量进行有效去除,为该研究区SMC的预测提供新的思路.  相似文献   
114.
应用电磁感应和遥感的新疆绿洲区域尺度盐渍土识别   总被引:4,自引:2,他引:2  
针对干旱区土壤盐渍化问题,以新疆渭干河-库车河绿洲为研究区,探讨电磁感应技术和光谱角分类法(SAM)相结合来识别典型干旱区盐渍土的可行性。以重度盐渍土为例,利用电磁感应仪EM38和采样数据,结合光谱角分类法和回归分析法,反演土壤电导率(EC1:5)的空间分布,识别重度盐渍土。结果表明:土壤表观电导率(ECa)与土壤电导率(EC1:5)具有较好的非线性相关性;垂直模式电导率(EMv)对土壤电导率(EC1:5)的解译精度优于水平模式电导率(ECh);研究区土壤盐分含量在区域尺度呈中等强度变异;电磁感应技术和光谱角分类法结合可以较好识别符合条件的盐渍土。该研究方法能够较好识别典型干旱区的盐渍土,为盐渍化评估、预防和治理提供了新的途径。  相似文献   
115.
新疆艾比湖地区土地沙漠化时空演变及其成因   总被引:2,自引:2,他引:0  
基于RS和GIS技术,对1990—2010年艾比湖地区沙漠化动态变化进行了监测。研究表明,艾比湖地区分布着大面积的沙漠化土地,主要分布在其东部和西岸地区。20a间沙漠化土地面积明显减少,沙漠化土地面积从1990年的4 426.49km2减少到2010年的637.33km2,减少了3 789.16km2。经历了强烈逆转—稳定发展—基本稳定3个阶段,1990—2001年沙漠化土地面积从4 426.49km2减少到3 713.2 5km2;2001—2007年沙漠化土地总面积保持基本不变,但沙漠化程度稍有加重;2007—2010年沙漠化土地总面积略微增加,沙漠化程度在持续加深。近20a来沙漠化转变尤为显著,气候变化和不合理的人类活动共同导致了研究区东部的沙漠化程度的加剧。  相似文献   
116.
顾永昇  丁建丽  韩礼敬  李科  周倩 《土壤》2023,55(2):426-432
本文以渭干河–库车河绿洲(简称渭–库绿洲)土壤颗粒为研究对象,采集了绿洲内50个典型表层(0~10 cm)土壤样本,通过相关软件,提取到遥感指数变量、地形和气候等环境变量,经过相关性分析确定环境变量和预测目标间的关系,使用R语言构建了预测土壤颗粒含量的随机森林(random forest,RF)模型和极端梯度提升(extreme gradient boosting,XGBoost)模型。研究结果表明:XGBoost模型的预测结果整体好于RF模型,其中相关系数介于0.39~0.78;土壤pH、高程及衍生变量、光谱变换变量均是两个模型预测土壤颗粒含量的重要因子;将模型预测结果、实测数据和世界土壤数据库(HWSD)中的3种土壤颗粒数据作对比分析,结果表现出模型预测数据的误差小于HWSD与实测数据的误差。综上所述,通过筛选环境变量建立的XGBoost模型,是预测渭–库绿洲土壤颗粒含量的有效方法。  相似文献   
117.
蒙莉娜  丁建丽  张振华 《土壤》2022,54(3):629-636
随着土壤环境问题涉及的尺度日趋增大,小区域斑块化盐渍化信息的提取难以了解土壤环境总体的变化趋势。本文以野外监测的南北疆典型绿洲区域——渭库绿洲和艾比湖流域为分析靶区,通过实测数据建立土壤–环境关系,并通过MODIS EVI数据反演得到植被物候特征,耦合植被物候、植被指数、盐度指数、地表温度和地形参数作为随机森林(random forest, RF)模型的输入因子,预测新疆绿洲区域土壤盐分含量信息并绘制土壤盐分空间分布图。结果表明:通过深入挖掘植被物候信息,物候参数在预测土壤盐分方面具有较高的相对重要性,代表生物积累量的LSI和SSI参数表征土壤盐渍化的能力较强,优于其他几个物候参数。耦合物候参数后土壤盐分信息预测精度明显提高,决定系数R~2从0.53提升到0.61。经模型反复迭代进一步筛选出适合研究区的23个环境参数,大幅提升了预测精度(R~2=0.73, RMSE=5.19, MAE=3.59)。从得到的盐渍化空间分布特征来看,新疆绿洲大部分区域分布的是非盐渍化土和轻盐渍化土,且普遍分布在绿洲内部,中度及以上盐渍化土多分布在绿洲外围,总体盐渍化水平依次为:伊犁平原<北疆绿洲&l...  相似文献   
118.
为深入研究浅层地下水、植被和土壤的相互作用,以新疆渭干河-库车河绿洲为研究区,通过Sentinel-1A数据和Landsat数据以及土壤含水率、地下水埋深数据,结合植被以及土壤条件,通过支持向量机模型(Support vector machine,SVM)定量反演研究区土壤水分以及地下水埋深信息。结果表明:0~10 cm的土壤含水率与地下水埋深之间的相关性最高。通过地形校正C模型(Topographic correction model),得到温度植被干旱指数(Temperature vegetation drought index,TVDI)精度有所提高。建立不同参数的SVM模型反演地下水埋深可行,对于单因子建模,TVDI_(MSAVI)构建的模型精度最高,建模集R~2=0. 74,均方根误差(Root mean square error,RMSE)为4. 66%,验证集R~2=0. 70,RMSE为4. 65%。相比只考虑单因子(后向散射系数(σ_(soil)~0)或TVDI),σ_(soil)~0和TVDI_(MSAVI)组合共同作用于模型精度最好,建模集R~2=0. 86,RMSE为4. 16%,验证集R~2=0. 92,RMSE为2. 73%。利用最优模型参数结果反演土壤水分区域和地下水埋深区域,其结果精度较好。地下水埋深反演结果平均相对误差为8. 23%,优于研究区以往研究18. 06%的结果。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号