首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
为探究植被覆盖条件下GF-1卫星反演农田土壤含水率的可行性,以河套灌区解放闸灌域沙壕渠为研究区,采用GF-1卫星遥感影像作为数据源,通过全子集筛选法确定不同土壤深度下光谱指数的最优自变量组合,并分别采用多元线性回归(MLR)、BP神经网络(BPNN)、支持向量机(SVM)3种算法,构建不同深度下土壤含水率反演模型。结果表明,全子集筛选后模型反演精度有较大提升,且过拟合现象减弱;植被覆盖条件下各深度土壤含水率敏感程度从大到小依次为0~40cm、0~60cm、20~40cm、0~20cm、40~60cm;植被覆盖条件下各模型对土壤含水率反演能力由强到弱依次为BPNN、SVM、MLR;筛选后BPNN在深度0~40cm下的建模集和验证集R2adj均能达到0.50以上,RMSE在0.02%以内。研究结果可为植被覆盖条件下利用GF-1卫星监测农田土壤含水率提供参考。  相似文献   

2.
黄河三角洲地区植被生长旺盛期地下水埋深遥感反演   总被引:1,自引:1,他引:0  
【目的】快速准确地获得大面积的黄河三角洲地区地下水埋深。【方法】利用2004年18个站点的植被生长旺盛时期(7—9月)的地下水埋深数据,采用一元和多元线性回归建模方法,确定反演指标,比较了遥感指标反演法与地学和遥感相结合的2种反演模型。【结果】对数变换后的NDVI、指数变换后的晚上LST和指数运算后的晚上TVDI是地下水埋深反演的敏感遥感指标,观测点距黄河的距离(H1)、观测点周围水体密度(ρ)、对数变换后的观测点距海岸线的距离(H2)和DEM是地下水埋深反演的敏感地学指标;只用遥感指标建立的地下水埋深预测模型的决定系数R2为0.496,引入地学参数后模型R2平均值增加到0.791。遥感和地学指标相结合的方法可以更准确地反演植被生长旺盛期研究区的地下水埋深分布状况。【结论】将遥感指标和地学指标相结合进行模拟更合理。  相似文献   

3.
地下水资源对区域经济社会发展至关重要,而准确预测地下水埋深是合理利用地下水资源的重要依据。以陕西关中平原33眼地下水埋深观测井的实测数据为输入,探讨长短时记忆网络模型(LSTM)在地下水埋深模拟预测当中的应用。结果表明:整体上,LSTM模型可以很好模拟关中地下水埋深的变化,但是模型在训练阶段的模拟精度要高于验证阶段的。具体而言,对33眼观测井同时模拟时,无论训练次数多少,其决定系数(R~2)均大于0.98,而均方根误差(RMSE)和相对均方根误差(RRMSE)分别小于5 m和14%;而在验证阶段,尽管模拟值与观测值的R~2仍然大于0.98,但是RMSE和RRMSE的最大值分别增加至7 m和27%。与此同时,模型的训练次数会影响模拟精度,模型训练次数需要与样本进行匹配,本研究适宜的训练次数为40次。此外,样本集的数据也是影响模型模拟准确度的关键因素,将33眼井的观测数据作为一个样本集的模拟精度要高于单眼井单独作为样本集的模拟精度,表明样本容量越大,LSTM的模拟精度越高。  相似文献   

4.
土壤水分是研究土壤-植物-大气循环系统中能量与物质交换的关键,通过尺度转换方法将无人机遥感数据上推以修正卫星数据,可有效改善卫星遥感反演模型精度。本文以河套灌区为研究对象,分别采用重采样和TsHARP升尺度法,引入多元线性回归(MLR)、BP神经网络(BPNN)和支持向量机(SVM)算法构建不同土壤深度下无人机-卫星升尺度土壤含水率反演模型。研究结果表明:重采样升尺度法在不同土壤深度下模型整体精度由高到低依次为SVM、MLR、BPNN,其中在土壤深度0~60 cm下采用SVM模型最优,R2达到0.571,RMSE为0.022%;TsHARP升尺度法在不同土壤深度下模型整体精度由高到低依次为BPNN、SVM、MLR,其中在土壤深度0~60 cm下采用BPNN模型最优,R2达到0.829,RMSE为0.015%。与升尺度修正前对应土壤深度模型对比,两种升尺度方法均能明显提高卫星遥感对土壤含水率的反演精度,但TsHARP升尺度法整体优于重采样法;重采样法的R2由0.413提升至0.571,RMSE由0.026%降至0.022%...  相似文献   

5.
为探究植被覆盖时的土壤盐分反演,以河套灌区解放闸灌域为研究区域、GF-1号影像为数据源,将盐分指数(SI2、S2、S3)、增强植被指数(EVI)和近红外NIR波段作为输入因子,分别利用多元线性回归(multivariable linear regression,MLR)、分位数回归(quantile regression,QR)和BP神经网络(back propagation neural network,BP)三种方法建立0~60 cm深度下土壤盐分反演模型。研究结果表明,MLR模型与QR模型均具有较高精度,能够较好的反演植被覆盖时的土壤盐分,其中QR模型验证精度最高,建模和验证的决定系数(coefficient of determination,R~2)分别达到0.627与0.636,均方根误差(root mean square error,RMSE)为0.249,平均绝对误差(mean absolute error,MAE)为0.235,是本次土壤盐分估算的最优模型。BP模型效果相对较差,建模与验证R~2为0.605和0.558。采用QR模型反演研究区土壤盐分,发现模型反演的盐分趋势符合实际情况;灌区主要分布非盐土和轻度盐渍化土壤,灌域南部地区土壤盐渍化程度低,约占32%;盐渍化程度较高的区域约占灌域总面积的19%。研究为探讨植被覆盖时的土壤盐分反演提供了思路。  相似文献   

6.
土壤水分监测对掌握农作物的生长状态至关重要。本研究为了在玉米作物的主要生育期有效地反演田间土壤含水量。本文以无人机平台获取的热红外遥感影像作为数据源,基于热惯量法反演田块尺度的土壤含水量。通过建立土壤热惯量与土壤含水量之间的线性回归模型,在试验田进行模型精度验证。结果表明,在实际农田环境中基于热惯量方法反演土壤含水量时,随着灌溉水平的提高其反演精度先升高后下降。模型在不同灌溉水平下反演土壤含水量的精度验证结果为:R~2=0.71,RMSE=3.09%。热惯量法具有较高的土壤含水量反演精度,为基于无人机热红外遥感田间土壤含水量监测提供了参考。  相似文献   

7.
不同时间尺度下冻融灌区地下水埋深CAR模型优选   总被引:1,自引:0,他引:1  
为提高冻融灌区地下水埋深的预测精度,探索不同时间尺度数据源对地下水埋深预测的影响,以河套灌区永济灌域为研究区域,针对地下水埋深在时间序列上表现的滞后性和非线性,建立了不同时间尺度(月、季、年) CAR模型,并进行了不同输入变量CAR模型的差异性分析。结果表明:季尺度数据源CAR模型拟合效果明显优于月尺度数据源CAR模型和年尺度数据源CAR模型,拟合效果较好的季尺度数据源CAR模型的决定系数(R~2)、NashSutcliffe系数(E_(ns))和均方根误差(RMSE)分别为0.936、0.934和0.046 m,较拟合效果较差的月尺度数据源CAR模型各项指标分别提高了11.30%、11.86%和降低了32.35%。仅考虑冻融期气温的CAR模型明显优于考虑气温的CAR模型和不考虑气温的CAR模型。冻融灌区最优地下水预测模型为季尺度数据源且仅考虑冻融期气温的CAR模型,其R~2为0.941,E_(ns)为0.940,RMSE为0.044 m,模拟精度较高。  相似文献   

8.
基于CAR-SVM模型的季节性冻融区地下水埋深预测   总被引:1,自引:0,他引:1  
准确预测地下水埋深是灌区水资源管理的重要依据.考虑到地下水埋深在时间序列上呈现滞后性和非线性,耦合了多变量时间序列CAR与支持向量机SVM,构建了CAR-SVM地下水埋深预测模型.为了提高模型在冻融期的模拟效果,构建了季节性冻融灌区地下水埋深拟合模型--CAR-SVM(T-TF)模型.模拟结果显示,只考虑冻融期气温的CAR-SVM(T-TF)模型优于考虑全年气温的CAR-SVM(T)模型及不考虑气温的CAR-SVM模型.CAR-SVM(T-TF)模型在全灌区地下水埋深的模拟结果:在验证期模型决定系数R2为0.954,冻融期R2为0.973;RMSE均小于0.090 m,模型精度较高.将全灌区得到的3阶CAR-SVM(T-TF)模型结构用于灌区内5个灌域地下水埋深模拟,模型在各灌域均有较好的适用性.  相似文献   

9.
河套灌区土壤水溶性盐基离子高光谱综合反演模型   总被引:4,自引:0,他引:4  
为了提高野外高光谱反演土壤水溶性盐基离子的精度,以河套灌区永济灌域盐渍化土壤为研究对象,构建了基于光谱变换、特征波段、特征光谱指数筛选以及支持向量机(SVM)的机器学习相结合的高光谱综合反演模型。结果表明,经预处理的原始光谱反射率与土壤离子相关性总体较低,最大相关系数仅为0.18,原始光谱反射率与土壤离子的相关系数由大到小依次为Ca~(2+)、SO_4~(2-)、Mg~(2+)、全盐量、Na~++K~+、Cl~-。全盐量、Na~++K~+、Cl~-、SO_4~(2-)、Ca~(2+)、Mg~(2+)的光谱最优变换形式分别为(1/R)″、(1/R)″、(lnR)'、(lnR)″、R'、(lnR)″,敏感波段(P0.01)数分别为41、7、9、65、76、28个,利用逐步回归法在敏感波段中筛选出特征波段,基于特征波段建立的回归模型中各离子的决定系数R~2平均值为0.35,均方根误差RMSE平均值为0.87 g/kg,其中SO_4~(2-)拟合精度最高,R~2为0.52,Ca~(2+)拟合精度最低,R~2仅为0.20。将特征波段代入光谱指数中,结合逐步回归法确定了Mg~(2+)特征光谱指数为3个,全盐量特征光谱指数为2个,Na~++K~+、SO_4~(2-)、Ca~(2+)特征光谱指数分别为1个,与仅考虑特征波段的回归模型相比,特征波段+特征光谱指数结合后各离子回归模型的R~2平均提高了58.67%,RMSE降低了24.60%,其中SO_4~(2-)拟合精度最高,R~2为0.74,RMSE为0.47 g/kg。考虑了特征波段+特征光谱指数的SVM模型相比仅考虑特征波段的SVM模型,其预测能力有了明显提高,各离子相对分析误差(RPD)平均提高了110.27%,训练集R~2平均提高了37.54%,RMSE平均降低了40.12%,验证集R~2平均提高了56.04%,RMSE平均降低了39.39%。SO_4~(2-)的RPD达到3.000,模拟效果最优,具备很好的预测能力;全盐量模型具有很好的定量预测能力,Mg~(2+)模型可用于评估或相关性方面的预测,Na~++K~+、Ca~(2+)的模型具有区别高低值的能力。  相似文献   

10.
土壤墒情是影响农作物生长状况重要参数之一,为提高农作物覆盖下地表土壤墒情反演精度,基于Sentinel-1雷达数据和Landsat8光学数据,利用改进的水云模型得到拔节期玉米覆盖下的地表土壤后向散射系数,并采用SAE深度学习的方法建立遥感影像与土壤水分之间的隐式映射,对玉米覆盖下的土壤墒情进行反演。结果表明:通过改进的水云模型去除植被影响后的反演精度有所提高,R~2达到0.657 7,比传统的水云模型提高了0.150 6;RMSE为0.038 7 cm~3/cm~3,误差降低0.002 5 cm~3/cm~3,为利用多源遥感数据反演农田地表土壤水分提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号