首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   3篇
  国内免费   8篇
农学   3篇
基础科学   3篇
  10篇
综合类   10篇
农作物   3篇
畜牧兽医   2篇
  2024年   1篇
  2023年   2篇
  2022年   6篇
  2021年   1篇
  2020年   7篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   2篇
排序方式: 共有31条查询结果,搜索用时 336 毫秒
11.
为探求夏玉米简化高效施肥技术,在河南省滑县和鹤壁两地采用田间试验,研究了单株定量施肥位置及施肥量对夏玉米产量、养分积累及肥料利用率的影响。结果表明,两地产量均以两侧定量施肥7.0 g最高,平均较两侧定量施肥5.8 g显著增产8.4%,较株间定量施肥7.0 g增产6.0%,较常规施肥增产3.8%;滑县和鹤壁采用两侧定量施肥7.0 g磷素积累量较常规施肥分别显著提高15.4%和21.6%,且保持夏玉米各生育时期较高的叶片SPAD值和成熟期高生物量;鹤壁两侧定量施肥7.0 g较常规施肥氮肥利用率显著提高8.3个百分点。研究表明,夏玉米苗期在两株玉米中间两边间隔15 cm左右各施一粒7.0 g粒片状肥料实现了高产、高效和简化施肥的目标。  相似文献   
12.
氮磷钾肥优化配施对冬小麦产量与养分吸收利用的影响   总被引:2,自引:1,他引:1  
为探究氮磷钾肥优化配施对冬小麦产量、养分吸收和积累以及利用特性的关系,推动高产高效施肥,于2017—2018年在河南省的鹤壁市和焦作市同步开展冬小麦田间试验,分析不施肥(CK)、磷钾肥配施(CF-N)、氮钾肥配施(CF-P)、氮磷肥配施(CF-K)、氮磷钾肥优化配施(CF)、控释尿素与普通尿素1:1配施(CRU)和农民习惯施肥(FP)对冬小麦产量、地上部养分积累和吸收利用效率的影响。结果表明,CF能显著提高冬小麦产量,其两地产量平均值分别较CK和FP提高30.27%和6.50%;与FP相比,焦作市CF的氮、磷、钾素积累量分别提高20.69%、1.03%和23.16%,鹤壁市则分别提高9.99%、3.27%和13.88%;两地CF氮、磷、钾肥利用率较CRU分别平均提高9.57、7.17和9.83个百分点,农学效率分别平均提高0.85、2.20和2.25个百分点。综上,采用氮、磷、钾肥用量分别为240、105、90 kg/hm2,并按照基肥与拔节肥1:1配施的CF处理可显著提高冬小麦产量及养分吸收利用效率。  相似文献   
13.
冬油菜叶片SPAD的时空分布和氮素诊断的叶位选择   总被引:5,自引:0,他引:5  
在大田试验条件下测定分析不同施氮水平冬油菜关键生育期SPAD值的时空分布特征,并对不同叶位及叶片不同部位SPAD值与叶绿素含量、叶片含氮量、植株全氮含量及籽粒产量之间的相关性进行分析,探求应用SPAD仪诊断油菜氮素营养状况的最佳测试叶位及位点。结果表明,油菜主茎顶部4片完全展开叶SPAD值存在显著空间差异,增加施氮量能显著提高各叶位叶SPAD值,同时减少叶位间的差异;六叶期、蕾薹期以顶4叶(TL4)SPAD值对氮素的敏感性最大,初花期和盛花期则最低。不同部位间,六叶期和初花期以中部SPAD值对施氮量增加的响应最敏感,盛花期则最迟钝,蕾薹期介于顶部和基部之间。综合分析认为,应用SPAD仪监测油菜氮素营养状况的最佳测试叶位和位点为主茎顶4片完全展开叶中部,该部位SPAD值与叶绿素含量、叶片含氮量和植株全氮含量之间的相关性均达到显著或极显著水平,满足氮素营养快速诊断的要求。  相似文献   
14.
基于高光谱的冬油菜叶片磷含量诊断模型   总被引:5,自引:2,他引:3  
为快捷、无损和精准表征冬油菜磷素营养与冠层光谱间的定量关系,该文以连续3a田间试验为基础,探究叶片磷含量的敏感波段范围及光谱变换方式,明确基于高光谱快速诊断的叶片磷含量有效波段,降低光谱分析维度,提高磷素诊断时效性。以2013-2016年田间试验为基础,测定不同生育期油菜叶片磷含量和冠层光谱反射率。此后,对原初光谱(raw hyperspectral reflectance,R)分别进行倒数之对数(inverse-log reflectance,log(1/R))、连续统去除(continuum removal,CR)和一阶微分(first derivative reflectance,FDR)光谱变换,采用Pearson相关分析确定叶片磷含量的敏感波段区域。在此基础上,利用偏最小二乘回归(partial least square,PLS)构建最优预测模型并筛选有效波段。结果表明,油菜叶片磷含量的敏感波段范围为730~1300 nm的近红外区域;基于敏感波段的FDR-PLS模型预测效果显著优于其他光谱变换方式,建模集和验证集决定系数(coefficient of determination,R2)分别为0.822和0.769,均方根误差(root mean square error,RMSE)分别为0.039%和0.048%,相对分析误差(relative percent deviation,RPD)为2.091。根据各波段变量重要性投影(variable importance in projection,VIP)值大小,确定油菜叶片磷含量有效波段分别为753、826、878、995、1 187和1 272 nm。此后,再次构建基于有效波段的油菜叶片磷含量估算模型,R2和RMSE分别为0.678和0.064%,预测精度较为理想。研究结果为无损和精确评估冬油菜磷素营养提供了新的研究思路。  相似文献   
15.
数字图像技术估测冬油菜氮素营养拍摄参数标准化研究   总被引:2,自引:0,他引:2  
【目的】数字图像技术可以用来快速无损地预测冬油菜的氮素营养,建立标准化的拍摄参数获取方法,可为不同作物、不同型号相机间结果的互用提供依据。【方法】以冬油菜为试验材料,设置不同氮肥水平(N:0、90、180、270和360 kg/hm2)田间试验,于苗期(移栽后79~83天),利用数码相机(Nikon-D7000,1620万像素)以不同光照强度、时间、高度、角度、照片像素尺寸和拍摄模式进行拍摄,并以不同储存格式进行保存。比较了不同拍摄条件下获取的冠层数字图像信息差异显著性,同时测定植株地上部生物量、叶片氮浓度和叶绿素浓度,分析冠层图像数字化指标(红光标准化值,NRI)与测定的氮素营养指标之间的相关性。【结果】晴天与阴天获取的冠层NRI均可较好的表达冬油菜冠层数字信息,晴天效果稍好于阴天;中午获取的冠层NRI与叶片氮浓度相关系数为-0.802**,优于上午和下午;1.5、2.0和2.5 m拍摄高度获取的冠层NRI差异不显著;30°、60°和90°拍摄角度下获取的冠层NRI与地上部生物量、叶片氮浓度和叶绿素浓度的相关性均达到极显著水平,30°~60°时获取冠层数码信息可操作性较强;拍摄模式为自动曝光模式获取冠层NRI与叶片氮浓度的相关系数为-0.802**,高于其他拍摄模式;三种照片像素尺寸(4928×3264、3696×2448和2464×1632)下获取的冠层NRI差异不大;储存格式为JPEG精细格式时获取的冠层NRI优于其他储存格式。【结论】综合分析认为,数字图像技术估测冬油菜氮素营养指标最佳操作范围为拍摄时间为晴天太阳高度角相对较大的中午;拍摄高度为近地面均可;拍摄角度为易于操作的30°~60°;相机拍摄模式为自动曝光模式;照片像素尺寸为图片相对较为清晰的高分辨率;存储格式为压缩格式且占用空间较小的JPEG精细格式。本研究为无人机低空遥感的氮素营养无损诊断技术提供了理论技术基础。  相似文献   
16.
无人机载多光谱遥感监测冬油菜氮素营养研究   总被引:1,自引:0,他引:1  
为探索无人机搭载的多光谱相机对冬油菜冠层氮素营养状况监测的可行性,设置9种施氮水平的油菜试验小区,获取八叶期、十叶期、十二叶期和蕾臺期的多光谱影像,同步采样分析获取地上部生物量、叶片氮浓度和氮素积累量等氮营养指标。以宽波段植被指数和氮营养指标的相关性为基础,通过敏感性分析确定最佳指数,建立预测模型并进行精度验证。结果显示,宽波段植被指数与氮营养指标有极显著的相关性,不同生育期差异明显。其中,红光标准值和蓝光标准值在蕾臺期均与各氮营养指标相关关系最好,且敏感性因子的值小而稳定。进一步研究表明,三种指标均可用红光标准值和蓝光标准值建立的二次模型进行估计,决定系数R2均大于0.85,模型精度较高,说明无人机多光谱遥感能有效辅助冬油菜氮素营养监测。  相似文献   
17.
基于数字图像技术的冬油菜氮素营养诊断   总被引:8,自引:1,他引:7  
【目的】利用田间氮肥梯度试验探讨数字图像技术对冬油菜氮素营养无损评估预测的可行性,明确该技术的最佳数码参数和方程模型,为数字图像技术进行冬油菜氮素无损诊断提供依据。【方法】2013-2014年在湖北省武穴市开展不同施氮处理田间试验,以冬油菜为试验材料,设置不同氮素水平(0、90、180、270和360 kg·hm-2),分别于六叶期、十叶期、蕾薹期和开花期,利用数码相机获取冠层数字图像数据,同时采集植株样品分析其生长特征值,研究其相关性并建立氮素营养参数的方程模型。利用2014-2015年独立氮肥水平试验,对上述方程模型拟合精度进行验证并绘制1﹕1线性关系图。【结果】数字图像红光值(R)、红光标准化值(NRI)和绿光与蓝光比值(G/B)与冬油菜氮营养状况常规诊断指标地上部生物量、叶片氮浓度和叶绿素浓度等呈负相关关系,而绿光值(G)、蓝光值(B)、绿光与红光比值(G/R)、蓝光与红光比值(B/R)、绿光标准化值(NGI)和蓝光标准化值(NBI)则与上述指标呈正相关关系,红光标准化值(NRI)与其他数码参数相比能更好地表征冬油菜的氮素营养状况,蕾薹期红光标准化值NRI与氮肥用量、地上部生物量、叶片氮浓度、叶绿素浓度、氮素吸收量和氮营养指数之间的关系可分别用线性方程y(t·hm-2)=-8.003x+2.706、y(t·hm-2)=-106.072x+38.200、y(g·kg-1)=-692.99x+ 261.84、y(mg·g-1)=-12.750x+5.665、y(kg·hm-2)=-4087.416x+1414.274和y=-27.198x+9.812来表达,其相关性达到极显著水平。2014-2015年独立试验模型检验结果表明,叶片氮浓度、叶绿素浓度和氮营养指数实测值与预测值的决定系数R2分别为0.917**、0.746**和0.953**;均方根误差RMSE分别为0.821、0.330和0.228;相对误差RE %分别为26.32%、28.57%和28.39%,模型预测精度较好。【结论】数字图像技术可以用于冬油菜氮素营养的评估预测,评估时期为蕾薹期(包括)之前均可,最佳预测参数为红光标准化值NRI,参数的最佳方程模型为直线方程函数。  相似文献   
18.
大豆和玉米影响后茬作物氮素供应的研究进展   总被引:1,自引:0,他引:1  
  【目的】  为提高轮作系统的生产力和土壤肥力的可持续性,我们从作物根系形态、残留养分有效性和土壤结构等方面,综述了大豆和玉米生产对土壤物理特性和后茬作物氮素供应能力的影响机理及原因。  主要进展  大豆根系呈网状分布,分枝侧根多,生长过程中新老根频繁更替,收获后土壤团聚体由原来的简单形态变为多级复合形态,团聚体内部孔隙增多,利于后茬作物的根系发育。大豆形成的稳定土壤团聚结构也是土壤氮素循环的良好基础,可有效提升土壤有机氮的总矿化和转化量,增强土壤对后茬作物的供氮潜力。玉米生产一般氮肥施用量较高,故收获后残留在土壤中的肥料氮相对较多。残留氮以NO3–-N和微生物氮形态存在的比例高,由于NO3–-N在土壤中不稳定、易损失,因此,不易于为后茬利用。大豆秸秆C/N低,翻压还田后易于被土壤微生物利用,加速土壤氮循环,易于后茬作物的吸收利用。加之豆科作物生长过程中死亡的根瘤和根形成的沉积物数量大,根系分泌物含有较高的甘氨酸和丝氨酸,且根际沉积物C/N较低,更易矿化转化为后季作物的重要氮源。因此,大豆较玉米更有利于后茬作物的生长和氮素营养。  展望  为更好地利用轮作优势,需要在以下几方面加强研究:提高大豆残留氮素高效利用的关键驱动因素比例;减少玉米收获后土壤残留氮素损失的氮素管理方法;残留氮素转移转化过程中的根–土–微生物互作机制。由于秸秆腐解会加快土壤有机碳的释放,因此减少大豆秸秆还田带来的轮作周年CO2等温室气体的排放,提高土壤的碳汇功能也将成为今后研究重点。  相似文献   
19.
【目的】植株组织分析是广泛应用的营养状况评价方法。水稻主茎从上往下的第二功能样品采集方便,对水稻植株损伤较小;叶片以全展开叶的状态存在于整个生育期。本文探讨了利用第二功能叶钾含量作为水稻钾营养诊断指标的可行性,为水稻种植提供一种操作性强且准确性高的钾营养诊断方法及指标。【方法】采用田间试验,设置施钾量(K2O)0、60、120、180、240、300和360 kg/hm27个处理,测定各生育期第二功能叶的钾含量和成熟期收获的稻谷产量,对各处理的产量进行显著性检验及肥效模型的拟合,并根据肥效模型对水稻产量进行分级;结合产量分级指标与钾含量和产量的回归方程,最终计算出水稻不同生育期的钾营养诊断指标值。【结果】施用钾肥显著增加稻谷产量,施钾量和稻谷产量适合用二次加平台模型拟合,满足营养诊断的要求。第二功能叶钾含量随施钾量的增加而显著增加,随生育进程先上升后下降,在拔节期达到最大;从分蘖初期到齐穗期,第二功能叶钾含量变化范围为0.85%~2.72%。各生育期第二功能叶钾含量与稻谷产量和施钾量具有极显著的相关性,可以作为诊断指标来预测稻谷产量及反映钾肥施用水平。按小于最佳产量的85%、85%~90%、90%~95%、95%~100%将产量分为5个等级,和大于100%,根据钾含量与产量回归方程计算出各时期的不同产量等级对应的钾含量分级指标,当临界产量为最佳产量的95%时,各时期对应的第二功能叶钾含量分别为1.34%、1.58%、1.98%、2.09%、1.33%和1.27%。【结论】第二功能叶钾含量与施钾量和水稻产量相关极显著,其关系可用二次加平方程模拟,故可作为水稻不同生育期的钾营养诊断指标;以最佳产量的95%作为产量临界值标准,当第二功能叶钾含量在分蘖初期、分蘖盛期、有效分蘖临界期、拔节期、孕穗期和齐穗期分别低于1.34%,1.58%,1.98%,2.09%,1.33%和1.27%,则水稻植株处于钾素缺乏水平,需要补充钾肥以维持其正常的钾素需求。  相似文献   
20.
为实现冬小麦不同生育时期地上部生物量的高光谱监测,2017-2019年分别在河南省鹤壁市、原阳县和温县布置冬小麦氮肥梯度田间试验,分别于分蘖期、拔节期、抽穗期和灌浆期测定冬小麦地上部生物量及其冠层原位高光谱反射率(400~950 nm),并采用Pearson相关分析明确两者间定量回归关系,再分别利用支持向量机(support vector machine, SVM)和偏最小二乘回归(partial least square, PLS)建立预测模型并进行精度验证,以确定最优光谱监测时期和有效波段。结果表明,冬小麦地上部生物量与冠层高光谱反射率在可见光区(400~715 nm)呈负相关,在近红外区(715~950 nm)呈正相关,且相关性表现为分蘖期<拔节期<灌浆期≤抽穗期。生育时期间模型精度差异较大,抽穗期效果最优,SVM和PLS模型的验证决定系数分别为0.877和0.859,相对分析误差分别为2.429和2.340;灌浆期次之,决定系数分别为0.835和0.830,相对分析误差分别为2.416和1.814;分蘖期最低,决定系数分别为0.693和0.750,相对分析误差分别为1.063和0.894。同时,冬小麦地上部生物量有效波段在生育时期间具有明显的异同性,分蘖期时有效波段在可见光-近红外区均有明显的均衡分布,至拔节期时产生明显的短波“蓝移”现象,抽穗期“蓝移”现象更显著,而至灌浆期则表现出明显的长波“红移”特征。此后,再次构建基于有效波段的冬小麦不同生育时期地上部生物量SVM和PLS监测模型,决定系数和相对分析误差分别高于0.72和1.40,预测精度较理想,能够满足无损和精准监测需求。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号