首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   2篇
  国内免费   42篇
农学   100篇
基础科学   3篇
  23篇
综合类   70篇
农作物   13篇
畜牧兽医   6篇
植物保护   2篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   7篇
  2014年   10篇
  2013年   12篇
  2012年   15篇
  2011年   13篇
  2010年   11篇
  2009年   11篇
  2008年   18篇
  2007年   16篇
  2006年   11篇
  2005年   12篇
  2004年   16篇
  2003年   6篇
  2002年   2篇
  2001年   3篇
  2000年   11篇
  1999年   8篇
  1998年   13篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1987年   1篇
  1963年   2篇
排序方式: 共有217条查询结果,搜索用时 31 毫秒
11.
麦棉两熟双高产条件下麦棉复合根系生长的时空动态分布   总被引:4,自引:0,他引:4  
在麦棉两熟双高产条件下,以单作棉和单作麦为对照,利用根钻与DT-SCAN扫描相结合的方法研究麦棉复合根系群体生长的时空动态分布,结果表明,套作棉和单作棉的根长和根长密度、根表面积以及根系平均直径均随生育进程呈单峰曲线,套作棉40 cm以下各土层根系根长和根长密度、根表面积的衰退速率在盛花期后明显低于单作棉,根系  相似文献   
12.
低温条件下相关关键酶活性对棉纤维比强度形成的影响   总被引:4,自引:2,他引:2  
【目的】研究低温对纤维比强度形成的影响。【方法】通过设置大田分期播种试验,使相同果枝部位棉铃可以处于不同的温度条件下发育,研究低温对棉纤维发育关键酶活性及相关基因表达的影响。【结果】低温影响纤维素的累积速率并最终影响纤维比强度的形成,其原因是在不同水平上影响了纤维发育关键酶的活性。在生化水平上,低温(铃龄0~50 d日均温<23.0℃,铃龄25~50 d日均温<21.0℃)提高了纤维中β-1,3-葡聚糖酶的活性、降低了蔗糖合成酶的活性,且前者对温度更为敏感。在基因表达水平上,低温使Expansin、蔗糖合成酶基因的表达量增加,β-1,3-葡聚糖酶基因的表达与此相反,低温下Expansin到达表达峰值时间推后且维持高表达的时间延长,低温可导致15 d铃龄纤维β-1,3-葡聚糖酶基因表达量显著降低,而蔗糖合成酶基因表达量显著升高。【结论】在纤维品质形成上,低温导致棉纤维伸长期及伸长高峰推后,低温下纤维素累积量、纤维比强度的变化特征与纤维蔗糖合成酶活性及β-1,3-葡聚糖酶基因表达的变化特征高度一致,与β-1,3-葡聚糖酶活性及蔗糖合成酶基因表达受低温影响的规律相反。  相似文献   
13.
选择棉纤维比强度差异明显的2个品种,研究了棉纤维发育关键酶(蔗糖合成酶和β-1,3-葡聚糖酶)活性的变化特征及其与纤维比强度的关系。结果表明,棉纤维发育过程中蔗糖合酶、β-1,3-葡聚糖酶活性变化特征在生化和mRNA转录水平上均存在明显的差异,影响纤维素的沉积特性及纤维比强度。高强纤维品种(科棉1号,平均比强度为35 cN·tex-1)的蔗糖合酶和β-1,3-葡聚糖酶活性及其基因表达量和维持高表达时间均高于低强纤维品种(德夏棉1号,平均比强度为26 cN·tex-1)。其中,高强纤维品种蔗糖合酶的基因表达量铃龄25 d时明显高于低强纤维品种,而β-1,3-葡聚糖酶的基因表达量则在铃龄10~25 d高于低强纤维品种。在纤维素形成过程中,高强纤维品种的纤维素累积平缓且纤维素累积持续期长于低强纤维品种,品种间差异程度受棉株果枝部位影响。在棉纤维发育过程中,Expansin、β-1,4-葡聚糖酶的基因表达量随铃龄的增加呈下降趋势(铃龄20 d时表达量显著下降),这与棉纤维形成过程(铃龄25 d前伸长较快,随后趋于停止)一致,且高强纤维品种维持高表达时间长与其纤维伸长期较长相吻合。  相似文献   
14.
棉籽在不同的温、湿度条件下吸水,都有三个快速吸水阶段,随温、湿度提高吸水速度加快。经硫酸脱绒的棉籽和温汤浸种后又晾干的棉籽.在28~30℃、4~5℃温度条件下吸水,其吸水速度都快于干籽,吸胀过程快速完成,没有明显的快速吸水阶段。田间插种条件下,5厘米地温低于8~10℃,棉籽需5天吸水达萌动饱和含水量(75%~80%);温度高于12~14℃,2~3天即可达到。  相似文献   
15.
不同施氮水平下棉花生物量动态增长特征研究   总被引:20,自引:2,他引:20  
在大田实验条件下,以定量方法系统地分析了黄淮海棉区(以河南安阳为试点)不同施氮水平(每公顷0 kg、120 kg、240 kg3、60 kg、480 kg)下棉株生物量的动态累积特征,结果表明:棉株地上、地下部分干物重的动态累积符合Logistic生长曲线,生物量的增长对氮肥施用量较为敏感;施肥量为360 kg.hm-2时棉田具有快速增长期启动早、持续时间短、增长速率大等特征,说明该施氮量利于棉花生长前期的生物量的快速累积,氮肥施用量过多或过少均不利于合理棉花群体的建立;不同的施氮量可以调节快速生长期的早晚和持续时间,同时亦可改变其干物质累积速率。生产中可以通过调节氮肥的施用量与时间获得高产。对于黄淮海棉区,适宜的施肥量为360 kg.hm-2,7月中旬为棉田肥水管理的关键期。  相似文献   
16.
我国农业对自然环境依赖性强,农业生产环境相对恶劣、资源利用效率低下,作物栽培理论与技术需要不断创新和完善。为建立与当前生产模式相匹配的作物高产高效栽培管理方式,选用棉花品种泗杂3号,于2012—2013年在长江下游棉区(江苏大丰)不同地力水平田块(高、低)进行麦棉两熟栽培管理方式定位试验,设超高产栽培、常规栽培和高产高效栽培,系统测定棉花生物量、产量和生育期间的温光、氮肥资源利用效率。结果表明,栽培方式和地力水平显著影响棉花产量,而产量的差异主要由温光、氮肥资源利用效率的差异造成。棉花产量提高的限制因子是低下的资源利用效率。高产高效栽培较常规栽培产量提高27.5%,温光资源利用效率分别提高27.7%、23.4%、氮肥偏生产力提高10.1%,是长江下游较为适宜的栽培方式。因此未来生产中应进一步合理优化栽培方式来提高棉田资源利用效率,以达到高产高效的目标。  相似文献   
17.
栽培方式对棉花生长、产量和品质的影响   总被引:2,自引:0,他引:2  
以营养钵育苗移栽栽培方式作为生产对照(T0),于2004年在江苏省的东台、射阳分别对移栽地膜棉改进栽培方式(T1)和"工厂化育苗 无土移栽 地膜覆盖"栽培方式(T2)2种棉花栽培方式进行大田试验.结果表明:随着生育进程的推移,棉花单位面积干物质累积及氮素吸收量表现为T2>T1>T0,由于苗期受小麦的胁迫作用,射阳试点苗期的干物重和氮累积量均低于东台试点.方差分析表明,栽培方式对棉花衣分、产量、单位面积的铃数及各项纤维品质指标的影响达到显著水平,并以T2生产成本最低、产量最高,且纤维品质较优,其公顷铃数、皮棉产量较对照明显提高,分别为:东台36%和26%,射阳32%和28%;施氮量较对照减少38%.  相似文献   
18.
研究麦棉两熟种植模式影响棉仁脂肪及蛋白质代谢机制,可为我国麦棉两熟棉区在稳定棉花产量和品质的基础上提高棉籽品质提供理论依据。试验于2012年和2013年在江苏省大丰市稻麦原种场进行,以泗杂3号(中晚熟品种)和中棉所50(早熟品种)棉花品种为材料,以单作棉为对照(CK),设置棉花生产上常用的麦套移栽棉(IC)、麦后移栽棉(TC)和麦后直播棉(DC)麦棉种植模式,研究麦棉两熟不同种植模式对棉仁脂肪和蛋白质的累积动态、关键酶活性及其相互关系的影响。结果表明:(1)两熟棉棉仁脂肪含量皆较CK低,IC、TC和DC呈依次下降的趋势;IC和TC棉仁蛋白质含量皆高于CK,DC低于CK;中棉所50棉仁脂肪和蛋白质含量均略高于泗杂3号。(2)两熟棉棉仁磷脂酸磷酸酯酶(PPase)和6-磷酸葡萄糖脱氢酶(G6PDH)活性低于CK,丙酮酸羧化酶(PEPC)活性高于CK;IC、TC棉仁谷氨酰胺合成酶(GS)和谷氨酸合酶(GOGAT)活性高于CK,DC低于CK;中棉所50棉仁具有较高的PPase、G6PDH、GS和GOGAT活性,PEPC活性稍低于泗杂3号。(3)棉仁最终脂肪含量与棉仁代谢过程中PPase、G6PDH活性呈极显著正相关,与PEPC活性呈极显著负相关;棉仁最终蛋白质含量与G6PDH活性及GS、GOGAT活性分别呈显著和极显著正相关。总之,在我国麦棉两熟棉区选择应用中熟棉花品种、麦套移栽方式可以在稳定棉花产量和品质的基础上提高棉籽品质。  相似文献   
19.
系统引入了知识模型概念,建立了以知识模型为特征的知识系统,将知识工程、数据库有机结合,采用正向与反向相结合的推理控制策略,建立了基于知识模型的作物适应性评价专家系统,实现了作物适应性评价的计算机辅助决策,具有较强的跟踪解释能力。用本系统对江苏省地区小麦适应性还进行了实例分析。  相似文献   
20.
温度对棉籽发育的影响   总被引:7,自引:0,他引:7  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号