首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
  国内免费   6篇
农学   3篇
基础科学   4篇
  10篇
综合类   4篇
农作物   1篇
植物保护   1篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   4篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
排序方式: 共有23条查询结果,搜索用时 145 毫秒
11.
CERES-Maize区域应用效果分析   总被引:7,自引:0,他引:7  
作物区域模拟是利用有限的空间数据,尽可能反映作物生育期、产量等性状的时空变化规律。本文尝试利用CERES-Maize模型进行区域模拟,并探讨区域应用的效果。结果表明,经区域校准后的CERES-Maize模型用于区域模拟时,基本可以反映出产量的变化规律,网格模拟产量与农调队调查产量的相对均方根差(RMSE%)为29.9%,符合度0.78。全国2144个网格71.3%的RMSE%在30%以内,其中RMSE%〈15%的为29.4%;就各区域而言,种植面积最大的玉米生态2区(占全国总面积的34%)效果最好,该区63.2%网格模拟的RMSE%小于15%。但区域模拟过程中还存在一系列误差,主要包括:模型本身的误差、作物品种遗传参数的误差、按一定区域范围归并的品种和管理参数引起的误差、区域划分引起的误差和空间数据的误差等,今后需要进一步校准和修正。  相似文献   
12.
【目的】准确预估未来气候变化条件下河南省夏玉米产量的变化,探索保障河南省夏玉米生产可持续发展较为有效的适应措施。【方法】将河南省划分为4个夏玉米主栽区,引入未来气候变化情景数据,分别为基准气候条件(RCP rf,1951-2005)和未来(2006-2050)RCP 4.5(中)、RCP 8.5(高)两种浓度路径(RCPs)情景。利用CERES-Maize模型模拟未来气候变化对河南省夏玉米潜在产量和雨养产量的影响。以作物模型和气候情景数据为基础,分别模拟改变种植密度、调整播期和优化灌溉方式3种适应措施的增产效果。【结果】未来不同气候变化情景下,河南各地区夏玉米潜在产量较基准条件降低6.1%~18.1%(RCP 4.5)和14.3%~24.6%(RCP 8.5),其中RCP 4.5情景下豫北减产最高(15.9%), RCP 8.5情景下豫东减产最高(21.1%);夏玉米雨养产量较基准条件降低5.1%~28.5%(RCP 4.5)和8.3%~28.9%(RCP 8.5),豫东减产最高,减产率分别为20.1%(RCP 4.5)和24.4%(RCP 8.5);不同气候变化情景下,夏玉米潜在和雨养产量差在0~2 814 kg/hm~2(RCP rf),0~1 868 kg/hm~2(RCP 4.5)和0~2 132 kg/hm~2(RCP 8.5),豫北产量差最高,豫西南降水较充足产量差最低,豫北和豫西产量差较基准条件降低,豫东产量差略增加。通过改变种植密度、调整播期和优化灌溉方式等措施,探讨不同适应措施的应用效果表明,种植密度每增加1万株/hm~2,夏玉米潜在产量增加3.8%~4.0%(豫北和豫东)和5.2%~5.6%(豫西和豫西南);雨养产量增加3.2%~3.7%(豫北和豫东)和5.2%~5.5%(豫西和豫西南)。播期推迟10 d,夏玉米潜在产量各区分别提高1.6%~9.5%(RCP 4.5)和2.7%~8.5%(RCP 8.5),雨养产量各区分别提高3.8%~13.2%(RCP 4.5)和5.4%~13.1%(RCP 8.5)。优化灌溉措施更适用于豫北和豫东,最高可分别增产31.4%,19.4%(RCP 4.5)和34.2%,16.9%(RCP 8.5)。【结论】未来RCP情景夏玉米潜在产量、雨养产量较基准气候条件均降低;增加种植密度、播期推迟10 d可实现增产,在播种期和拔节-抽雄期2个阶段同时灌溉,可提高水资源利用效率。  相似文献   
13.
基于CERES-Maize的黄淮平原夏玉米阶段缺水模拟分析   总被引:1,自引:0,他引:1  
李树岩  刘荣花  成林 《玉米科学》2013,21(5):151-156
利用1991~2004年黄淮夏播玉米区8个试验站的气象、土壤、田间管理等基础数据对DSSAT 4.0中的CERES-Maize模型进行参数调整和检验。使用调参后的模型模拟黄淮夏播玉米区不同生育期缺水对玉米产量的影响。模拟结果表明,在营养生长阶段,拔节期为水分对玉米产量影响关键期;生殖生长阶段,灌浆期为水分关键期,其中灌浆前期水分对产量影响最大。7叶期和拔节期缺水时最大叶面积指数显著降低,阻碍植株干物质积累,茎叶干重显著降低;灌浆前期缺水穗粒数显著减少;灌浆中期缺水显著降低百粒重。  相似文献   
14.
为了探究锦州地区平均气候状态下玉米最佳播期,同时检验作物模型法和最佳季节法确定最佳播期的适用性,利用辽宁锦州农田试验站3a分期播种试验数据,在对作物生长模型CERES-Maize进行参数校正与模拟效果检验的基础上,应用模型模拟不同播期下玉米30a(1981-2010年)的产量,同时应用最佳季节法分析该地区的玉米最佳播期,结合作物模型法的研究结果,提出对最佳季节法的改进办法。结果表明:CERES-Maize模型能够较好地模拟不同播期玉米的物候期和产量,其归一化均方根误差(NRMSE)小于10.3%,对不同播期下30a的产量模拟结果显示,当播期从4月10日推迟至5月10日,玉米平均产量增加6%,当播期从5月10日推迟至5月30日,玉米产量中值从9112kg·hm-2降至8619kg·hm-2,4月25日和4月30日播种玉米的平均产量与5月10日播种的玉米产量无显著差异。结果显示最佳季节法确定的锦州地区玉米最佳播期较为滞后,与作物模型法的研究结果及实际生产的播期有较大出入,因此,提出了对最佳季节法的改进办法即将灌浆期间的不利气温条件考虑在内,改进后得到的最佳播期与作物模型法研究结果较一致。从30a平均气候状况看,该地区玉米的最佳播期在4月25日-5月10日,作物模型法有较好的适用性,最佳季节法经过改进后也可实际应用。  相似文献   
15.
以渭北旱塬合阳和长武2个试验站点为研究区域,通过多年的玉米田间试验数据评估CERES-Maize模型的适用性,再利用区域气候模式Reg CM4.0输出的气象数据对2050年前玉米单产及生产水足迹进行预测。结果表明:CERES-Maize模型可以很好地模拟雨养玉米产量和物候期,多数年份二者的绝对相对误差(Absolute relative error,ARE)在10%以内,CERES-Maize模型在渭北旱塬旱作农业区有很好的适用性。应用CERES-Maize模型模拟玉米生产水足迹,较传统水足迹计算方法得到的结果更为精确可靠。在RCP2.6气候情景下,随着温度升高和生育期有效降水量的增加,玉米产量呈上升趋势;在RCP8.5气候情景下,随着温度升高和生育期有效降水的减少,玉米产量呈下降趋势。气温上升幅度过大对玉米单产有明显的负面影响,降水与玉米用水效率呈正相关。为有效应对气候变化对旱作作物产量造成的负面影响,应采取减少温室气体排放量、增强土壤蓄水保墒能力、发展集雨补灌、筛选和培育节水抗旱新品种等措施。  相似文献   
16.
河南省不同生态区CERES-Maize模型参数确定及精度验证   总被引:1,自引:0,他引:1  
本研究将河南夏玉米主产区划分为4个生态区,利用全省18个站近十余年农气观测资料对CERESMaize模型进行参数调试和验证,其中2003—2005年为模型调参年份,2006—2010年为模型验证年份。根据各生态区的多站点调参验证的平均状态,获得4套模型区域品种参数。由各生态区夏玉米品种遗传参数可知,I区全生育期所需积温最多,其次是Ⅲ区和Ⅳ区;单穗潜在最大籽粒数Ⅰ区最高,Ⅲ区次之,Ⅳ区最低;灌浆速率参数Ⅲ区略小,其他地区较相近。各生态区生物量和产量的模拟和验证结果表明,归一化均方根误差NRMSE均小于20%,模型对各生态区生物量和产量模拟能力较强。但各生态区模拟效果有一定差异,其中生物量调试结果中观测值与模拟值均值较接近,验证结果中实测值较模拟值普遍偏大,尤其是Ⅰ区和Ⅱ区。在产量验证中,Ⅰ区和Ⅱ区模拟值略低于观测值,而Ⅲ区和Ⅳ区模拟值略高于观测值。Ⅰ-Ⅲ区生物量和产量的观测值和模拟值相关系数r均通过显著检验,模型对于这些地区生物量及产量增减的变化趋势模拟较好。对生物量和叶面积指数的动态模拟及验证结果表明,地上部总生物量动态增长的拟合效果较好。叶面积指数观测值略滞后于模拟值,但总体趋势吻合度较好。  相似文献   
17.
18.
为了应用CERES-Maize模型模拟吉林春玉米生长发育和产量形成,需要确定主栽春玉米品种的遗传参数。采用晚熟春玉米品种‘吉单159’和‘先玉335’多年田间观测数据和同期气象、土壤等数据进行遗传参数调试,并对模型的模拟效果进行验证。结果表明:2个春玉米品种生育期的模拟值和实测值散点均在1:1线周围。‘吉单159’播种至开花天数和播种至成熟天数RMSE值分别为3.78和10.90。‘先玉335’播种至出苗天数、播种至开花天数和播种至成熟天数RMSE值分别为1.12、3.20和4.85。2个品种春玉米的地上部生物量和叶面积指数的模拟值与实测值均在抽雄期接近,三叶期和七叶期差异最大。‘吉单159’和‘先玉335’产量的RRMSE值分别为4.31%和4.81%。说明CERES-Maize模型对吉林春玉米生育期和产量模拟效果较好,地上部生物量次之,叶面积指数一般。总之,CERES-Maize模型能够应用于吉林省气候变化对春玉米影响的评价。  相似文献   
19.
Our objective was to study by observation and simulation the effects of (1) three different dates of seedling emergence and (2) presence of short sequences of missing plants in rows of maize canopies which we refer to as skips. Trials were carried out in Belgium and France during two consecutive years. We had eight trials in total (i.e. two experimental designs in two locations for 2 years). In a field mechanically sown with a precision drill to give ‘normal plants’, ‘late 1 plants’ and ‘late 2 plants’ (respectively) were sown by hand when ‘normal plants’ had germinated or emerged. The radiation available at the top of the plants was measured for each cohort which allowed the calculation of a ‘coefficient of correction for light climate’ corresponding to the ratio of incident light at the top of each cohort relative to normal. Heterogeneity (skips) was created in maize canopies by removing three adjacent plants situated in the same row at 16 different locations across the field. The part of the canopy affected by the presence of these skips was considered to consist of the 12 plants bordering each skip. Radiation was measured near soil level on both sides of these plants: plants of the part of the canopy affected by skips received on average the same amount of radiation as a uniform stand with a population density equal to three quarters of the density of the parts of the stand without skips. To test if differences in radiation reaching the level of plants in each cohort could explain the effects on the plants the behaviour of each cohort of plants in each location x year was modelled separately with CERES-Maize after introducing into the model a ‘coefficient of correction for light climate’ corresponding to each cohort×location×year combination. Simulations generally reproduced correctly decreases in LAI, total biomass, grain number and total grain yield in the late 1 and late 2 cohorts, but not decrease in individual grain weight. The observed loss of grain yield per unit surface area in the parts of the canopy disturbed by skips was between 7 and 15%, whereas corresponding simulated values were between 6 and 11%. In the absence of compensation, values in the disturbed parts would have been 20%. Thus in our conditions amount of light reaching the different cohorts explained a large part of the treatments effects.  相似文献   
20.
【目的】研究新疆膜下滴灌玉米的灌溉制度和需水规律,为新疆玉米节水增产提供科学指导。【方法】基于2020年4个不同灌水水平下的玉米生长发育及产量数据,对DSSAT-CERES-Maize模型进行参数率定和验证,评价模型在新疆地区的适用性;利用1979―2017年气象数据,对典型年型分别设置14种灌溉方案,探究新疆膜下滴灌玉米的最优灌溉制度。【结果】利用玉米的叶面积指数、干物质量、产量的观测值对CERES-Maize模型进行参数率定和验证。叶面积指数、干物质量、产量等的模拟值和实测值都表现出了较好的一致性,模拟效果较好。通过模拟分析可得,不同年型玉米关键需水期对缺水的敏感程度大小为:抽雄期>拔节期>灌浆期。综合考虑产量和水分利用效率,枯水年、平水年、丰水年玉米抽雄期灌溉量分别为180、180、120 mm,灌浆期均灌溉120 mm,其余各生育期灌溉量都为60mm时最优。优化后灌溉制度对应的产量分别在枯水年、平水年、丰水年占对应最高产量的99.53%、97.51%、98.45%。【结论】CERES-Maize模型总体上可以应用于新疆地区滴灌玉米的研究,利用模型优化后的灌溉制度能够为新疆滴灌玉米的种植提供一定的参考依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号