首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1263篇
  免费   67篇
  国内免费   133篇
林业   42篇
农学   70篇
基础科学   61篇
  771篇
综合类   320篇
农作物   42篇
水产渔业   18篇
畜牧兽医   13篇
园艺   9篇
植物保护   117篇
  2024年   10篇
  2023年   33篇
  2022年   26篇
  2021年   51篇
  2020年   44篇
  2019年   40篇
  2018年   54篇
  2017年   57篇
  2016年   56篇
  2015年   64篇
  2014年   58篇
  2013年   91篇
  2012年   136篇
  2011年   75篇
  2010年   66篇
  2009年   63篇
  2008年   49篇
  2007年   83篇
  2006年   57篇
  2005年   46篇
  2004年   47篇
  2003年   38篇
  2002年   34篇
  2001年   26篇
  2000年   42篇
  1999年   23篇
  1998年   31篇
  1997年   10篇
  1996年   15篇
  1995年   11篇
  1994年   2篇
  1993年   7篇
  1992年   2篇
  1991年   5篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
排序方式: 共有1463条查询结果,搜索用时 484 毫秒
81.
甜玉米填闲减缓菜田土壤硝酸盐淋溶的研究   总被引:5,自引:0,他引:5  
为提高菜田氮肥的利用率,降低氮肥对环境的污染风险。在中德合作项目东北旺试验田(土壤类型为潮土),三年(1999~2001)9季蔬菜长期传统施氮灌水与推荐施氮灌水处理的地力基础上,于高温多雨的夏季选择甜玉米作为填闲作物,以休闲处理作对照,研究甜玉米在土壤硝态氮淋溶关键期对土壤残留硝态氮素分布及对后茬蔬菜产量的影响。研究结果表明甜玉米生长迅速、生物量大、吸收氮素能力强,吸氮量可达205.6~246.1 kg/hm2;与休闲处理相比,种植甜玉米能有效的吸收0~60 cm土壤中残留氮素,实现了土壤残留氮素的再利用。0~180 cm剖面中土壤硝态氮的残留量都有不同程度的降低,有效阻抑了氮素向土壤深层的淋洗。甜玉米也获得了较高的经济产量,穗净鲜重达9.2~10.2 t/hm2。后茬作物菠菜收获后未被利用的氮素大部分残留在土壤浅层;甜玉米处理与休闲处理相比未显著影响后季菠菜的生长,产量达18.4~20.7 t/hm2。该研究表明:甜玉米是较为理想的填闲作物。  相似文献   
82.
Nitrate (NO3) leaching due to anthropogenic nitrogen (N) deposition is an environmental problem in many parts of the UK uplands, associated with surface water acidification and affecting lake nutrient balances. It is often assumed that gaseous return of deposited N to the atmosphere as N2O through denitrification may provide an important sink for N. This assumption was tested for four moorland catchments (Allt a’Mharcaidh in the Cairngorms, Afon Gwy in mid-Wales, Scoat Tarn in the English Lake District and River Etherow in the southern Pennines), covering gradients of atmospheric N deposition and surface water NO3 leaching, through a combination of field and laboratory experiments. Field measurements of N2O fluxes from static chambers with and without additions of NH4NO3 solution were carried out every 4 weeks over 1 yr. Wetted soil cores from the same field plots were used in experimental laboratory incubations at 5 and 15 °C with and without additions of NH4NO3 solution, followed by measurement of N2O fluxes. Field measurements showed that significant N2O fluxes occurred in only a very small number of plots with most showing zero values for much of the year. The maximum fluxes were 0.24 kg-N/ha/yr from unamended plots at the River Etherow and 0.49 kg-N/ha/yr from plots with NH4NO3 additions at the Allt a’Mharcaidh. Laboratory incubation experiments demonstrated that large N2O fluxes could be induced by warming and NH4NO3 additions, with the top 5 cm of soil cores responsible for the largest fluxes, reaching 11.8 kg-N/ha/yr from a podsol at Scoat Tarn. Acetylene block experiments showed that while N2 was not likely to be a significant denitrification product in these soils, reduced N2O fluxes indicated that nitrification was an important source of N2O in many cases. A simple model of denitrification suggesting that 10-80% of net N inputs may be denitrified from non-agricultural soils was found to greatly over-estimate fluxes in the UK uplands. The proportion of deposition denitrified was found to be much closer to the IPCC suggested value of 1% with an upper limit of 10%. Interception of N deposition by vegetation may greatly reduce the net supply of N from this source, while soil acidification or other factors limiting carbon supply to soil microbes may prevent large denitrification fluxes even where NO3 supply is not limiting.  相似文献   
83.
With a world‐wide occurrence on about 560 million hectares, sodic soils are characterized by the occurrence of excess sodium (Na+) to levels that can adversely affect crop growth and yield. Amelioration of such soils needs a source of calcium (Ca2+) to replace excess Na+ from the cation exchange sites. In addition, adequate levels of Ca2+ in ameliorated soils play a vital role in improving the structural and functional integrity of plant cell walls and membranes. As a low‐cost and environmentally feasible strategy, phytoremediation of sodic soils — a plant‐based amelioration — has gained increasing interest among scientists and farmers in recent years. Enhanced CO2 partial pressure (PCO2) in the root zone is considered as the principal mechanism contributing to phytoremediation of sodic soils. Aqueous CO2 produces protons (H+) and bicarbonate (HCO3). In a subsequent reaction, H+ reacts with native soil calcite (CaCO3) to provide Ca2+ for Na+ Ca2+ exchange at the cation exchange sites. Another source of H+ may occur in such soils if cropped with N2‐fixing plant species because plants capable of fixing N2 release H+ in the root zone. In a lysimeter experiment on a calcareous sodic soil (pHs = 7.4, electrical conductivity of soil saturated paste extract (ECe) = 3.1 dS m‐1, sodium adsorption ratio (SAR) = 28.4, exchangeable sodium percentage (ESP) = 27.6, CaCO3 = 50 g kg‐1), we investigated the phytoremediation ability of alfalfa (Medicago sativa L.). There were two cropped treatments: Alfalfa relying on N2 fixation and alfalfa receiving NH4NO3 as mineral N source, respectively. Other treatments were non‐cropped, including a control (without an amendment or crop), and soil application of gypsum or sulfuric acid. After two months of cropping, all lysimeters were leached by maintaining a water content at 130% waterholding capacity of the soil after every 24±1 h. The treatment efficiency for Na+ removal in drainage water was in the order: sulfuric acid > gypsum = N2‐fixing alfalfa > NH4NO3‐fed alfalfa > control. Both the alfalfa treatments produced statistically similar root and shoot biomass. We attribute better Na+ removal by the N2‐fixing alfalfa treatment to an additional source of H+ in the rhizosphere, which helped to dissolve additional CaCO3 and soil sodicity amelioration.  相似文献   
84.
山地土壤坡向性分异的研究概况   总被引:2,自引:0,他引:2  
综述了山地土壤坡向性分异的研究概况,包括土壤生物积累和盐基淋溶的坡向差异,以及坡向对土壤垂直带谱结构的影响。已有研究大多集中在山地土壤垂直带谱的坡向分异,可将其归纳为山地迎风坡与背风坡和阴、阳坡分异两种主要情况。同时,针对目前有关山地土壤坡向性研究的不足,提出了今后研究的重点:从山体不同坡向的对应高度出发,运用现代地理研究方法,研究山地土壤多种属性的坡向性分异及其生产生态意义。  相似文献   
85.
热带亚热带酸性土壤硝化作用与氮淋溶特征   总被引:3,自引:0,他引:3  
通过室内好气培养和土柱模拟淋洗培养试验,研究了氨基氮肥加入对热带亚热带4种不同性质和利用方式酸性土壤硝化、氮及盐基离子淋溶、土壤及淋出液酸化的影响。4种土壤分别为采自花岗岩发育的海南林地砖红壤(HR)、玄武岩发育的云南林地砖红壤(YR)、第四纪红黏土发育的江西旱地红壤(RU)和第四纪下蜀黄土发育的江苏旱地黄棕壤(YU)。结果表明:4种土壤硝化作用大小表现为YURUYRHR。HR主要以可溶性有机氮(DON)和NH_4~+-N形态淋失,YU土壤的氮淋溶形态以NO_3~–-N为主,YR和RU土壤的氮淋溶形态NO_3~–-N、NH_4~+-N和DON兼而有之。盐基离子总淋失量与NO_3~–-N淋失量显著正相关,但各盐基离子淋失由于离子本性和土壤性质差异并不完全一致。Ca~(2+)在缓冲外源NH_4~+-N硝化致酸和平衡NO_3~–-N淋失所带负电荷过程中起重要作用。在阳离子交换量小、盐基饱和度低的土壤(如RU土壤),外源NH_4~+-N的硝化和淋失不仅导致盐基离子淋失,而且引发NH_4~+-N、甚至是H~+淋失。综上,热带亚热带地区土壤上外源氮输入的增加可能会在更短的时间内导致氮素向系统外的流失,引发环境问题。  相似文献   
86.
太湖地区稻麦轮作农田氮素淋洗特点   总被引:37,自引:0,他引:37  
通过排水采集器模拟试验研究了太湖地区不同施肥水平下农田N素淋洗特点。结果表明,N的渗漏损失以硝态氮(NO3^--N)为主,并发生在麦季,铵态氮(NH4^ -N)淋洗量则很少,NO3^--N的量占渗漏液总N量的43%-72%,浓度为20-110mg/kg;渗漏水中N的含量与土壤N的淋洗量随施肥量的增加而增加,麦季土壤中NO3^--N肥量的3.7%-12.2%;与纯化肥处理比较,化肥 猪粪处理增加了农田N的淋失,化肥 秸秆处理减少了土壤中N的淋失,与麦田渗漏水相比较,稻田渗漏水除水稻生长早期的部分样品外,NO3^--N和NH4^ -N含量均很低,分别在1mg/kg和0.5mg/kg以下。  相似文献   
87.
王志敏  林青  王松禄  徐绍辉 《土壤》2015,47(3):496-502
以青岛市大沽河下游地区冬小麦–夏玉米轮作农田为对象,通过田间试验和室内分析,研究了不同深度土壤和地下水中NO3–-N在一个轮作周期内的动态变化特征,探讨了不同氮肥施用量和灌溉量对土壤-地下水系统中NO3–-N时空分布的影响,并基于土壤水动力学和溶质运移理论对土壤中NO3–-N运移过程进行了数值模拟。模拟结果表明:小麦季施氮(N)量达到380 kg/hm2,玉米季施氮量达到290 kg/hm2时,季末剖面深度130~160 cm土壤NO3–-N含量超过10 mg/kg;由地下水NO3–-N月累计量估算模型得出,NO3–-N在6月和8月向浅部地下水的淋失量最大,分别为7.20、7.67 mg/L。  相似文献   
88.
樟树人工林生态系统的水分生态效应   总被引:2,自引:0,他引:2  
对樟树人工林生态系统的大气降水、树干茎流、穿透水、林内地表径流、地下径流中N、P、SiO2、K、Ca、Mg、Cu、Fe、Zn、Mn共1O种养分元素含量进行了测定。结果表明:不同月份大气降水养分元素含量不同,各元素各月平均含量按大小排序为Ca〉SiO2〉Zn〉NH4-N〉K〉NO3-N〉Fe〉Mg〉Mn〉P〉Cu。大气降水经过林冠层后,树干茎流、林内穿透水中各养分元素含量变化基本一致,均表现季节动态变化.大多数元素含量增加。树干茎流中各元素含量按大小排序为K〉Ca〉NH4-N〉SiO2〉Mg〉NO3-N〉Zn〉Mn〉Fe〉P〉Cu;林内穿透水中各元素含量按大小排序为Ca〉K〉Zn〉SiO2〉NH4-N〉NO3-N〉Mg〉Mn〉Fe〉P〉Cu。树干茎流中SiO2、Fe、Zn,穿透水中Fe为负淋溶.其余各元素浓度有所增加,在这2项中,除NH4-N、K外,树干茎流中NO3-N、P、SiO2、Ca、Cu、Fe、Zn、Mn养分元素的富集作用均小于穿透水。  相似文献   
89.
The objective of this study was to explore if more crop-specific plant growth modules can improve simulations of crop yields, and N in tile flow under different management practices compared with a generic plant growth module. We calibrated and evaluated the Root Zone Water Quality Model (RZWQM) with the Decision Support for Agrotechnology Transfer (DSSAT v3.5) plant growth modules (RZWQM-DSSAT) for simulating tillage (NT — no till, RT — ridge till, CP — chisel plow, and MP — moldboard plow), crop rotation {CC — continuous corn, and CS — corn (Zea mays L.)-soybean [Glycine max (L.) Merr.]}, and nitrogen (N) (SA — single application at preplant, and LSNT — late spring soil N test based application) and manure (SM — fall injected swine manure) management effects on crop production and water quality. Data from 1978 to 2003 from a water quality experiment near Nashua (Nashua experiments), Iowa, USA, were used. The model was calibrated using data from one treatment plot and validated for the rest of the plots. Simulated management effects on annual N loading in tile flow were agreeable with measured effects in 85%, 99%, 88%, and 78% of the cases for tillage, crop rotation (CS vs. CC), N application timing (SA vs. LSNT), and swine manure applications (SM vs. SA), respectively. On average, the LSNT plots were simulated to have 359 kg ha− 1 higher corn yield compared to SA, when the observed increase was 812 kg ha− 1. Grain yield simulations were not sensitive to differences between RT and NT, between SM and SA treatments, and between CS and CC. We conclude that considering the uncertainties of basic input data, processes in the field, and lack of site specific weather data, the results obtained with this RZWQM-DSSAT hybrid model were not much better than the results obtained earlier with the generic crop growth module.  相似文献   
90.
Background, Aim and Scope   Part 1: Behaviour of Polycyclic Musks in Sewage Sludge of Different Treatment Plants in Summer and Winter Part 2: Investigation of Polycyclic Musks in Soils and Plants -  Preamble. In Part 1 of the study, screening tests were performed to investigate the occurrence of PCMs in sewage sludges. For a preliminary risk assessment, further information is needed about their behaviour in the terrestrial environment. Hence, Part 2 examined the adsorption of PCMs to soil, their dissipation and leaching in soil and their uptake by plants. Background, Aim and Scope   Polycyclic Musks (PCMs) enter the environment via the waste water system. Because of their persistence, they can accumulate in different matrices like sewage sludge or biota. By the use of sewage sludge as a fertilizer, PCMs are transferred to agricultural soils. Therefore, in Part 1 of the study, screening tests were performed to investigate the occurrence of PCMs in sewage sludge. For a preliminary risk assessment, further information is needed about their behaviour in the terrestrial environment. Hence, Part 2 of the study examined the adsorption of PCMs to soil, their dissipation and leaching in soil, and their uptake by plants. Materials and Methods: In the screening study, samples of activated sewage sludge were taken both in summer and in winter at 21 treatment plants. In order to get an overview of the contamination situation, sampling covered different types of treatment plants (in rural, urban, industrial areas). Analytical methods for the determination of HHCB, AHTN, ADBI, ATTN, AHDI and ATII in the sludge samples were developed and applied. Results: The analytical screening of PCMs showed their presence in activated and dried sewage sludge samples. HHCB and AHTN represented about 95% of the PCMs investigated. Their concentrations in the activated sludge samples varied between 2.9 and 10.4 mg/kg dry mass (dm) and 1.1 to 4.2 mg/kg dm, respectively. Although different types of sewage treatment plants were investigated, similar PCM levels were found, showing the widespread input of these compounds into domestic waste water. Discussion: PCM concentrations in activated sludge varied widely. The variation drops substantially when concentrations are related to the varying dry mass. In dehydrated sludge, PCM concentrations were up to 24 mg/kg dm for HHCB and up to 6.9 mg/kg dm for AHTN. These high values are comparable to those obtained in other investigations analysing PCMs. If the degradation of organic mass during anaerobic decomposition is included in the evaluation, the figures obtained are comparable to those for activated sludge. Elimination in sewage sludge was higher in summer than in winter. Therefore, the contamination of the sludges in winter reached higher levels compared to the summer. Conclusions: The results show that PCMs are widespread contaminants in sewage sludge. Recommendations and Perspectives: PCM should be considered in a risk assessment as potential contaminants of sewage sludge destined for agricultural use. Due to the high PCM levels in sewage sludge, further investigations into the degradation and elimination behaviour in sewage sludge have to be carried out, including that involving PCM metabolites such as lactone derivatives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号