首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6400篇
  免费   361篇
  国内免费   668篇
林业   1342篇
农学   321篇
基础科学   208篇
  2316篇
综合类   1844篇
农作物   172篇
水产渔业   228篇
畜牧兽医   659篇
园艺   73篇
植物保护   266篇
  2024年   21篇
  2023年   102篇
  2022年   183篇
  2021年   190篇
  2020年   230篇
  2019年   253篇
  2018年   215篇
  2017年   302篇
  2016年   436篇
  2015年   361篇
  2014年   362篇
  2013年   500篇
  2012年   491篇
  2011年   492篇
  2010年   377篇
  2009年   392篇
  2008年   326篇
  2007年   344篇
  2006年   327篇
  2005年   244篇
  2004年   187篇
  2003年   158篇
  2002年   92篇
  2001年   92篇
  2000年   88篇
  1999年   100篇
  1998年   74篇
  1997年   67篇
  1996年   76篇
  1995年   81篇
  1994年   43篇
  1993年   45篇
  1992年   45篇
  1991年   41篇
  1990年   31篇
  1989年   24篇
  1988年   19篇
  1987年   11篇
  1986年   4篇
  1985年   3篇
排序方式: 共有7429条查询结果,搜索用时 46 毫秒
31.
Brassica rapa L. is a genetically diverse parent species of the allotetraploid species, oilseed rape (B. napus) and a potential source of drought tolerance for B. napus. We examined the effect of a 13‐day drought stress period during the early reproductive phase, relative to a well‐watered (WW) control, on subsequent growth and development in nine accessions of B. rapa and one accession of Brassica juncea selected for their wide morphological and genetic diversity. We measured leaf water potential, stomatal conductance, water use, and leaf and bud temperatures during the stress period and aboveground dry weight of total biomass at maturity. Dry weight of seeds and reproductive tissue were not useful measures of drought tolerance due to self‐incompatibility in B. rapa. The relative total biomass (used as the measure of drought tolerance in this study) of the 10 accessions exposed to drought stress ranged from 47 % to 117 % of the WW treatment and was negatively correlated with leaf‐to‐air and bud‐to‐air temperature difference when averaged across the 13‐day stress period. Two wild‐type (B. rapa ssp. sylvestris) accessions had higher relative total and non‐reproductive biomass at maturity and cooler leaves and buds than other types. We conclude that considerable genotypic variation for drought tolerance exists in B. rapa and cooler leaves and buds during a transient drought stress in the early reproductive phase may be a useful screening tool for drought tolerance.  相似文献   
32.
To assess changes in organic carbon pools, an incubation experiment was conducted under different temperatures and field moisture capacity (FMC) on a brown loam soil from three tillage practices used for 12 years: no‐till (NT), subsoiling (ST) and conventional tillage (CT). Total microbial respiration was measured for incubated soil with and without the input of straw. Results indicated that soil organic carbon (SOC) and microbial biomass carbon (MBC) under ST, NT and CT was higher in soil with straw input than that without, while the microbial quotient (MQ or MBC: SOC) and metabolic quotient (qCO2) content under CT followed the opposite trend. Lower temperature, lower moisture and with straw input contributed to the increases in SOC concentration, especially under NT and ST systems. The SOC concentrations under ST, with temperatures of 30 and 35°C after incubation at 55% FMC, were greater than those under CT by 28.4% and 30.6%, respectively. The increase in MBC was highest at 35°C for 55%, 65% and 75% FMC; in soil under ST, MBC was greater than that under CT by 199.3%, 50.7% and 23.8%, respectively. At 30°C, the lower qCO2 was obtained in soil incubated under NT and ST. The highest MQ among three tillage practices was measured under ST at 55% FMC, NT at 65% FMC and CT at 75% FMC with straw input. These data indicate the benefits of enhancing the MQ; the low FMC was beneficial to ST treatment. Under higher temperature and drought stress conditions, the adaptive capacity of ST and NT is better than that of CT.  相似文献   
33.
Foliar pathogens such as Zymoseptoria tritici and Puccinia striiformis causing septoria leaf blotch and yellow rust respectively can cause serious yield reduction in winter wheat production, and control of the diseases often requires several fungicide applications during the growing season. Control is typically carried out using a constant fungicide dose in the entire field although there may be large differences in crop development and biomass across the field. The objective of the study reported in this paper was to test whether the fungicide dose response curve controlling septoria leaf blotch and other foliar diseases in winter wheat was dependent on crop development and biomass level. If such a biomass dependent dose response was found it was further the purpose to evaluate the potential to optimize fungicide inputs in winter wheat crops applying a site-specific crop density dependent fungicide dose. The study was carried out investigating fungicide dose response controlling foliar diseases in winter wheat at three biomass densities obtained growing the crop at three nitrogen levels and using variable seed rates. Further the field experiments included three fungicide dose rates at each biomass level, an untreated control, and 75%, 50% and 33% of the recommended fungicide dose rate and the experiments were replicated for three years. Crop biomass had a significant influence on occurrence of septoria and yellow rust with greater disease severity at increasing crop biomass. In two of three years, the interaction of crop biomass and fungicide dose rate had a significant influence on disease severity indicating a biomass-dependent dose response. The interaction occurred in the two years with high yield potential in combination with severe disease attack. If the variation in crop density and biomass level obtained in the study is representative of the variation found cultivating winter wheat in heterogeneous fields, then there seems to be scope for optimizing fungicide input against foliar diseases site-specific adapting the dose according to crop density/biomass.  相似文献   
34.
Extreme drought events can directly decrease productivity in perennial grasslands. However, for rhizomatous perennial grasses it remains unknown how drought events influence the belowground bud bank which determines future productivity. Ninety‐day‐long drought events imposed on Leymus chinensis, a rhizomatous perennial grass, caused a 41% decrease in the aboveground biomass and a 28% decrease in belowground biomass. Aboveground biomass decreased due to decrease in both the parent and the daughter shoot biomass. The decreases in daughter shoot biomass were due to reductions in both the shoot number and each individual shoot weight. Most importantly, drought decreased the bud bank density by 56%. In addition, drought induced a bud allocation change that decreased by 41% the proportion of buds that developed into shoots and a 41% increase in the buds that developed into rhizomes. Above results were supported by our field experiment with watering treatments. Thus, a 90‐day‐long summer drought event decreases not only current productivity but also future productivity, because the drought reduces the absolute bud number. However, plasticity in plant development does partly compensate for this reduction in bud number by increasing bud development into rhizomes, which increases the relative allocation of buds into future shoots, at the cost of a decrease in current shoots.  相似文献   
35.
为提高甘蓝型油菜耐寒育种过程中的筛选效率,研究甘蓝型油菜耐低温机理,以8个不同抗寒性的甘蓝型油菜为材料,对低温条件下各材料的生物量、叶绿素、脯氨酸和相对电导率进行测定,发现在室外平均气温2.75℃时,抗性材料的生物量、叶绿素和脯氨酸的累积量都显著高于敏感材料,相对电导率没有显著差异;当平均气温7.52℃回升至12.39℃,抗性材料和敏感材料生物量的累积量无显著差异;在恒定低温10℃/4℃处理下抗性材料和敏感材料在处理前3周生物量均持续累积,但从第4周开始敏感材料新叶出现白斑,生物量减少,抗性材料老叶出现白斑,生物量维持不变。结果表明,耐低温材料在低温条件下叶绿素含量受到的影响较小,脯氨酸的积累量持续上升,具有较强的快速适应能力,在低温下具有显著的持续生长优势。  相似文献   
36.
在对广西沙塘林场巨尾桉2年生人工林调查基础上,按标准木法测定巨尾桉人工幼林生物量,建立其估算模型,计算出巨尾桉人工林分的生物量和生产力,分析各器官生物量分配规律及林分生产力水平。结果表明,2年生巨尾桉人工林年生物量为16.57 t/hm^2,其中,干、根、叶、枝、皮各器官生物量所占比例依次为46.67%、16.85%、14.62%、12.16%、9.62%。应用建立的估算模型估测巨尾桉人工幼林生物量,其相关程度达显著水平。  相似文献   
37.
以三年生狐臭柴为实验材料,设置自然光和遮光两种光照条件,用三种叶面肥进行喷施,分析不同肥料对狐臭柴叶片生物量和主要生化指标的影响。结果表明:喷施氮肥能显著提高狐臭柴叶片生物量,自然光及遮光下分别增加37.30%和15.02%,但果胶的积累减少,分别降低19.78%和17.35%;磷肥能显著提升叶片果胶的含量,分别增加158.08%和239.96%,但叶片生物量显著低于对照,分别降低55.83%和47.40%;复合肥对叶片生物量无明显影响,果胶含量轻微降低。各肥料均使可溶性糖含量降低,且在遮光条件下使叶片内可溶性蛋白含量增加,自然光下使可溶性蛋白含量降低。  相似文献   
38.
Although the effects of cover crops (CC) on various soil parameters have been fully investigated, less is known about the impacts at different stages in CC cultivation. The objective of this study was to quantify the influence of CC cultivation stages and residue placement on aggregates and microbial carbon (Cmic). Additionally, the influence of residue location and crop species on CO2 emissions and leached mineralized nitrogen (Nmin) during the plant degradation period was also investigated. Within an incubation experiment, four CC species were sown in soil columns, with additional columns being kept plant‐free. After plant growth, the columns were frozen (as occurs in winter under field conditions) and then incubated with the plant material either incorporated or surface‐applied. With CC, concentrations of large and medium macroaggregates were twice that of the fallow, confirming positive effects of root growth. Freezing led to a decrease in these aggregate size classes. In the subsequent incubation, the large macroaggregates decreased far more in the samples with CC than in the fallow, leading to similar aggregate size distributions. No difference in Cmic concentration was found among the CC cultivation stages. CO2 emissions were roughly equivalent to the carbon amounts added as plant residues. Comparison of columns with incorporated or surface‐applied residues indicated no consistent pattern of aggregate distribution, CO2 emission or Cmic and Nmin concentrations. Our results suggest that positive effects of CC cultivation are only short term and that a large amount of organic material in the soil could have a greater influence than CC cultivation.  相似文献   
39.
In a field experiment, we examined the effects of structural complexity in the form of added artificial plastic plants and shredded plastic bags on growth and abundance of juvenile brown trout (Salmo trutta). Just after emergence, the added complexity had a positive effect on the density, biomass and condition factor of young‐of‐the‐year (0+) brown trout. This difference in density was not present six weeks later. In contrast, both young‐of‐the‐year and older brown trout generally tended to be larger in the simple habitat. Hence, our data suggest that increased complexity initially is beneficial for young‐of‐the‐year individuals probably due to lower risk of predation and increased densities of prey. However, as density increases in the complex environment, it may induce negative density‐dependent effects, here reflected in smaller sized fish in the complex environment. This might force fish to redistribute to habitats with lower densities of conspecifics as they grow larger. We propose that habitat complexity can increase survival of yearlings in early phases and thereby also affect the overall population structure of brown trout in natural streams.  相似文献   
40.
席颖  贾国梅  王旭  何立 《湖北农业科学》2016,(16):4113-4116
不同植被类型影响着土壤养分的积累、分布与循环,而土壤氮素是植被生长的重要限制性元素。通过分析宜昌点军区3种植被类型(柏树地、橘树地、菜地)覆盖下土壤氮素的变化情况,研究了不同植被对土壤氮素各形态的影响。结果表明,土壤全氮、硝态氮和微生物氮都是柏树地显著大于菜地和橘树地,而菜地和橘树地之间无显著性的差异;土壤矿化氮和微生物氮/全氮的变化顺序是柏树地橘树地菜地。说明不同植被覆盖对土壤氮有显著的影响,柏树地更有利于土壤氮的积累,氮的有效性也最高,由此认为柏树长期生长有益于土壤氮的改善。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号