首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
ABSTRACT

Management of grassland may affect the dynamics of soil organic carbon (SOC). Objectives were to analyze the effect of different harvesting frequencies and nitrogen fertilization regimes on SOC and total N stocks in a field trial on a sandy loam to loamy sand soil of a grassland site near Kiel (Germany). Additionally, effects on microbial biomass C (Cmic) and ergosterol (as proxy for fungi) contents, water-stable aggregate size-classes and density fractions were studied. In the surface soil (0–10 cm), SOC and total N stocks, amounts of large water-stable macroaggregates (> 2000 µm) and contents of Cmic and ergosterol were significantly higher under a five cut regime. Cmic (rSpearman = 0.61) and ergosterol contents (rSpearman = 0.67) were correlated with amounts of large water-stable macroaggregates suggesting that fungi and microbial biomass play an important role in binding of small macroaggregates into large macroaggregates. The free light fraction of SOM showed significantly higher C concentrations under three cut compared to five cut at 30–60 cm, presumably related to the C/N ratio and the decomposability of root litter. This study indicates the importance of cutting frequency on SOC and total N stocks, amounts of large macroaggregates and contents of Cmic and ergosterol.  相似文献   

2.
The following parameters were measured on seven field plots at 3 sites which had been under organic farming for different periods of time: mineral nitrogen (N min) contents, in situ net nitrogen mineralization (N net), soil microbial biomass carbon (C mic), and nitrogen (N mic) contents, and extractable organic N contents. The measurements were conducted every three weeks from spring 1995/1996 to autumn 1997. The objective was to test whether, under organic farming: 1) temporal fluctuations of Nmic contents over the course of the year are indicative for a source‐and‐sink function for plant‐available N of the soil microbial biomass, and 2) temporal variations in Nmic content can be related with in situ Nnet or plant N uptake. Nmin contents gradually increased after ploughing in autumn until late winter. During intensive plant growth in spring, values rapidly declined. In situ Nnet fluctuated only moderately and reached high values during intensive plant growth (May—July) as well as after soil cultivation in autumn. The Cmic and Nmic contents generally were low in winter, increased in spring and reached maxima in late spring or summer. In spring, the increase in Cmic contents preceded the increase in Nmic contents, resulting in elevated Cmic:Nmic ratios until shooting of winter wheat. This corresponds to an uptake of available soil nitrogen by the plants at the expense of soil micro‐organisms. The subsequent increase in Nmic contents, coinciding with high plant N uptake rates, indicates an enhanced, plant‐induced N mobilization at that time. Possible mobilization mechanisms are discussed. Soil microbial biomass exerted a source‐and‐sink function for extractable organic N on some of the field plots. Estimates of in situ Nnet measurements were neither correlated significantly with soil microbial biomass N, Nmic flux, Nmic turnover, nor with plant N uptake. Lower Nmic turnover rates on 41 years versus 3 years organically managed fields indicate a stabilizing effect of organic farming on soil microflora.  相似文献   

3.
Management intensity modifies soil properties, e.g., organic carbon (Corg) concentrations and soil pH with potential feedbacks on plant diversity. These changes might influence microbial P concentrations (Pmic) in soil representing an important component of the P cycle. Our objectives were to elucidate whether abiotic and biotic variables controlling Pmic concentrations in soil are the same for forests and grasslands, and to assess the effect of region and management on Pmic concentrations in forest and grassland soils as mediated by the controlling variables. In three regions of Germany, Schwäbische Alb, Hanich‐Dün, and Schorfheide‐Chorin, we studied forest and grassland plots (each n = 150) differing in plant diversity and land‐use intensity. In contrast to controls of microbial biomass carbon (Cmic), Pmic was strongly influenced by soil pH, which in turn affected phosphorus (P) availability and thus microbial P uptake in forest and grassland soils. Furthermore, Pmic concentrations in forest and grassland soils increased with increasing plant diversity. Using structural equation models, we could show that soil Corg is the profound driver of plant diversity effects on Pmic in grasslands. For both forest and grassland, we found regional differences in Pmic attributable to differing environmental conditions (pH, soil moisture). Forest management and tree species showed no effect on Pmic due to a lack of effects on controlling variables (e.g., Corg). We also did not find management effects in grassland soils which might be caused by either compensation of differently directed effects across sites or by legacy effects of former fertilization constraining the relevance of actual practices. We conclude that variables controlling Pmic or Cmic in soil differ in part and that regional differences in controlling variables are more important for Pmic in soil than those induced by management.  相似文献   

4.
Soil samples from the upper 10-cm-thick layer of the humus horizon (without forest litter) were taken in Podol’sk and Serpukhov districts (1130 and 1080 km2, respectively) of Moscow oblast. At each sampling site, ecosystem (forest, plowland, or fallow), soil (soddy-podzolic, soddy-gley, bog-podzolic, meadow alluvial, gray forest, and anthropogenically transformed soils of lawns and industrial zones), predominant vegetation, and topography (floodplain and low, medium, and upper parts of watersheds) were determined. The carbon content of the microbial biomass (Cmic) was determined by the method of substrate-induced respiration; we also determined the rate of basal (microbial) respiration (BR) and the organic carbon content, pH, and particle-size distribution. Overall, 237 samples from Serpukhov district and 45 samples from Podol’sk district were analyzed. The BR/Cmic ratios (respiration quotient qCO2) and Cmic/Corg ratios were calculated. The Cmic content in the soils ranged from 43 to 1394 μg C/kg; the BR varied from 0.06 to 25 μg CO2-C/g per h, qCO2, from 0.34 to 6.52 μg CO2-C/mg Cmic per h; and the Cmic/Corg ratio, from 0.19 to 10.65%. It was found that the most significant factors affecting the variability of the Cmic and BR are the parameters of ecosystem (50% and 80%, respectively) and soil (30% and 9%, respectively). The most significant variability of these indices was found in forest soils; it was mainly controlled by the soil texture (33 and 23%) and the Corg content (19 and 24%). The Cmic parameter made it possible to differentiate the soils of the territory for the purposes of their evaluation, monitoring, and biological assessment more clearly than the BR value and the soil chemical characteristics.  相似文献   

5.
In two layers of the humus horizons in soddy-podzolic soils of different biogeocenoses (Kostroma oblast) representing a succession series, the carbon content in the microbial biomass (Cmic) was determined using the method of substrate-induced respiration and the rate of microbial CO2 production (basal respiration, BR). The Cmic content was from 110 to 755 μg/g soil, and the BR was from 0.40 to 2.52 μg CO2-C/g/h. A gradual increase in the Cmic content and BR was found in the following sequence: cropland—fallow (7-year-old)—young (20- and 45-year-old) forests—secondary and native (primary) forests (90- and 450-year-old, respectively). In the litter, the Cmic content was higher in the 45-year-old forest than in the secondary and native forests: 10423, 6459, and 4258 μg C/g of substrate, respectively. The portion of Cmic in the soil organic carbon content in the upper layer of the soils studied varied from 1.3 to 5.4%; its highest value was in the soils under the secondary and native forests. The pool of microbial biomass carbon and the microbial CO2 production in the upper 25-cm layer of the soils were calculated.  相似文献   

6.
The response of microbial biomass carbon (Cmic), nitrogen (Nmic), basal respiration, and the metabolic quotient to 3 years of a natural succession fallow were studied in a field experiment on sandy soil in Northeast Saxony/Germany from 1996 to 1998. Soil samples were taken from Eutric Cambisol and Mollic Cambisol every six weeks during the vegetation period at soil depths of 0—10 and 10—30 cm. The Cmic content in the topsoils increased with time of succession in both soil types. This trend was more distinct in the Mollic Cambisol (70.7 μg g—1 in June 1996 to 270.9 μg g—1 in October 1998 at 0—10 cm) than in the Eutric Cambisol (69.7 μg g—1 in June 1996 to 175.0 μg g—1 in October 1998 at 0—10 cm). By contrast, the Nmic content slightly decreased in the Eutric Cambisol from 18.9 μg g—1 to 17.7 μg g—1 during the same time period. In the Mollic Cambisol, the Nmic increased from 18.8 μg g—1 in spring 1996 to 35.5 μg g—1 in fall 1998, however to a lower extent than the Cmic. Subsequently, the (C:N)mic ratio increased from 4.3 to 5.8 at soil depth of 0—10 cm and from 3.5 to 6.5 at 10—30 cm during the 3‐year‐study at the Eutric Cambisol. In the Mollic Cambisol, the enhancement of (C:N)mic ratio was more pronounced (i.e. from 4.3 to 6.7 at 0—10 cm and from 3.5 to 7.2 at 10—30 cm). Most likely this results from a shift in microbial populations towards a dominance of soil fungi. The already low basal respiration of, on average, 0.26 mg CO2 g—1 (24h)—1 (0—10 cm) in June 1996 decreased with time of succession fallow to 0.15 and 0.22 mg CO2 g—1 (24h)—1 in October 1998 in the Eutric and the Mollic Cambisol, respectively. Thus, the metabolic quotient as an indicator for the efficiency of organic matter turnover in soil was very low in both soils. During the summer months, the metabolic quotients reached minimum levels of ≤ 0.1 μg CO2 C (g Cmic)—1 h—1, probably because of low soil moisture contents. Correlation analyses revealed close relationships between Nmic and total N, Nmic and water content, and Nmic and pH values. These relationships became even more pronounced with the time period of natural succession. For the samples from fall 1998, highly significant correlations were determined between Nmic and total N (coefficients were rs = 0.91***), Nmic and water content (rs = 0.91***), and Nmic and pH value (rs = 0.76***). The values for all biological parameters studied were larger in the Mollic than in the Eutric Cambisol. This indicates higher turnover rates of different C and N fractions in the Mollic Cambisol. In general, set aside of formerly agricultural managed sandy soils resulted in greater Cmic : Nmic ratios and thus, in a change in the microbiological community structure as well as in reduced C and N turnover rates (i.e. low metabolic quotient) under the climatic conditions of the East German lowlands.  相似文献   

7.
Understanding carbon dynamics in soil is the key to managing soil organic matter. Our objective was to quantify the carbon dynamics in microcosm experiments with soils from long-term rye and maize monocultures using natural 13C abundance. Microcosms with undisturbed soil columns from the surface soil (0-25 cm) and subsoil (25-50 cm) of plots cultivated with rye (C3-plant) since 1878 and maize (C4-plant) since 1961 with and without NPK fertilization from the long-term experiment ‘Ewiger Roggen’ in Halle, Germany, were incubated for 230 days at 8 °C and irrigated with 2 mm 10−2 M CaCl2 per day. Younger, C4-derived and older, C3-derived percentages of soil organic carbon (SOC), dissolved organic carbon (DOC), microbial biomass (Cmic) and CO2 from heterothropic respiration were determined by natural 13C abundance. The percentage of maize-derived carbon was highest in CO2 (42-79%), followed by Cmic (23-46%), DOC (5-30%) and SOC (5-14%) in the surface soils and subsoils of the maize plots. The percentage of maize-derived C was higher for the NPK plot than for the unfertilized plot and higher for the surface soils than for the subsoils. Specific production rates of DOC, CO2-C and Cmic from the maize-derived SOC were 0.06-0.08% for DOC, 1.6-2.6% for CO2-C and 1.9-2.7% for Cmic, respectively, and specific production rates from rye-derived SOC of the continuous maize plot were 0.03-0.05% for DOC, 0.1-0.2% for CO2-C and 0.3-0.5% for Cmic. NPK fertilization did not affect the specific production rates. Strong correlations were found between C4-derived Cmic and C4-derived SOC, DOC and CO2-C (r≥0.90), whereas the relationship between C3-derived Cmic and C3-derived SOC, DOC and CO2-C was not as pronounced (r≤0.67). The results stress the different importance of former (older than 40 years) and recent (younger than 40 years) litter C inputs for the formation of different C pools in the soil.  相似文献   

8.
In 11 rain‐fed arable soils of the Potohar plateau, Pakistan, the amounts of microbial‐biomass C (Cmic), biomass N (Nmic), and biomass P (Pmic) were analyzed in relation to the element‐specific total storage compartment, i.e., soil Corg, Nt, and Pt. The effects of climatic conditions and soil physico‐chemical properties on these relationships were highlighted with special respect to crop yield levels. Average contents of soil Corg, Nt, and Pt were 3.9, 0.32, and 0.61 mg (g soil)–1, respectively. Less than 1% of Pt was extractable with 0.5 M NaHCO3. Mean contents of Cmic, Nmic, and Pmic were 118.4, 12.0, and 3.9 µg (g soil)–1. Values of Cmic, Nmic, Pmic, soil Corg, and Nt were all highly significantly interrelated. The mean crop yield level was closely connected with all soil organic matter– and microbial biomass–related properties, but showed also some influence by the amount of precipitation from September to June. Also the fraction of NaHCO3‐extractable P was closely related to soil organic matter, soil microbial biomass, and crop yield level. This reveals the overwhelming importance of biological processes for P turnover in alkaline soils.  相似文献   

9.
Urban soils (constructozems) were studied in Moscow and several cities (Dubna, Pushchino, and Serebryanye Prudy) of Moscow oblast. The soil sampling from the upper 10-cm-thick layer was performed in the industrial, residential, and recreational functional zones of these cities. The biological (the carbon of the microbial biomass carbon, Cmic and the microbial (basal) respiration, BR) and chemical (pHwater and the contents of Corg, heavy metals, and NPK) indices were determined in the samples. The ratios of BR to Cmic (the microbial respiration quotient, qCO2) and of Cmic to Corg were calculated. The Cmic varied from 120 to 738 μg C/g soil; the BR, from 0.39 to 1.94 μg CO2-C/g soil per hour; the Corg, from 2.52 to 5.67%; the qCO2, from 1.24 to 5.28 μg CO2-C/mg Cmic/g soil per h; and the Cmic/Corg, from 0.40 to 1.55%. Reliable positive correlations were found between the Cmic and BR, the Cmic and Cmic/Corg, and the Cmic and Corg values (r = 0.75, 0.95, and 0.61, respectively), as well as between the BR and Cmic/Corg values (r = 0.68). The correlation between the Cmic/Corg and qCO2 values was negative (r = −0.70). The values of Cmic, BR, Corg, and Cmic/Corg were found to correlate with the ammonium nitrogen content. No correlative relationships were revealed between the determined indices and the climatic characteristics. The principal component analysis described 86% of the variances for all the experimental data and clearly subdivided the locations of the studied soil objects. The ANOVA showed that the variances of Cmic, Corg, and BR are controlled by the site location factor by 66, 63, and 35%, respectively. The specificity of the functioning of the anthropogenic soils as compared with their natural analogues was clearly demonstrated. As shown in this study, measurable biological indices might be applied to characterize the ecological, environmental-regulating, and productive functions of soils, including urban soils.  相似文献   

10.
Abstract

The study was conducted to evaluate the effect of tea cultivation on soil microbial biomass and community structure. Soil pH, extractable aluminum (Al), organic carbon (Corg) and total nitrogen were considerably modified by tea cultivation. Long‐term tea cultivation resulted in the increase of microbial biomass C (Cmic), microbial biomass N (Nmic), and basal respiration. The metabolic quotient declined as the tea cultivation age increased. The adjacent citrus orchard soil showed a higher Cmic/Corg ratio than the tea orchard soils. Microtitration plates with 21 carbon sources and two different pH levels (4.7 and 7.0) were used to determine the substrate utilization pattern of these soils. The average well color development (AWCD) of the carbon sources in the plates did not vary in a consistent manner with the microbial biomass. Multivariate analysis of sole carbon source utilization pattern demonstrated that land‐use history had a significant effect on substrate utilization pattern. The pH 4.7 characterization medium can increase the discrimination of this technique and is more adequate than the conventional neutral medium for the tea orchard soils.  相似文献   

11.
Twenty plots (20 m2 each) were selected in coniferous and mixed forests of the industrial Vologda district and the Vytegra district without developed industries in Vologda region. In March, snow cores corresponding to the snow cover depth were taken on these plots. In August, soil samples from the 0- to 20-cm layer of litter-free soddy-podzolic soil (Albic Retisol (Ochric)) were taken on the same plots in August. The content of mineral nitrogen (Nmin), including its ammonium (NH+4) and nitrate (NO-3) forms, was determined in the snow (meltwater) and soil. The contents of total organic carbon, total nitrogen, and elements (Al, Ca); pH; particle size distribution; and microbiological parameters―carbon of microbial biomass (Cmic) and microbial respiration (MR)―were determined in the soil. The ratio MR/Cmic = qCO2 (specific respiration of microbial biomass, or soil microbial metabolic quotient) was calculated. The content of Nmic in meltwater of two districts was 1.7 mg/L on the average (1.5 and 0.3 mg/L for the NH+4 and NO3 forms, respectively). The annual atmospheric deposition was 0.6–8.9 kg Nmin/ha, the value of which in the Vologda district was higher than in the Vytegra district by 40%. Reliable correlations were found between atmospheric NH+4 depositions and Cmic (–0.45), between NH+4 and qCO2 (0.56), between atmospheric NO-3 depositions and the soil NO-3 (–0.45), and between NO-3 and qCO2 (–0.58). The content of atmospheric Nmin depositions correlated with the ratios C/N (–0.46) and Al/Ca (–0.52) in the soil. In forests with the high input of atmospheric nitrogen (>2.0 kg NH+4/(ha yr) and >6.4 kg Nmin/(ha yr)), a tendency of decreasing Cmic, C/N, and Al/Ca, as well as increasing qCO2, was revealed, which could be indicative of deterioration in the functioning of microbial community and the chemical properties of the soil.  相似文献   

12.
Interactions between microbial communities and organic matter were analyzed for soils from the project regions ’︁Ecosystem Research in the Agricultural Landscape/FAM, Munich’ in southern Germany and ’︁Ecosystem Research in the Bornhöved Lake district’ from northern Germany using ratios between microbial biomass content (Cmic), microbial metabolic quotient (qCO2) and organic carbon content (Corg). In the agricultural soils in southern Germany, the qCO2/Corg ratio differed significantly with respect to agricultural management in contrast to ecophysiological Cmic/Corg ratio. In addition, Cmic/Corg ratio decreased from 39 to 21 mg Cmic g—1 Corg and qCO2/Corg ratio increased from 72 to 180 mg CO2‐C g—1 Cmic h—1 (g Corg g—1 soil)—1 with increasing soil depth. For the upper soil horizons from the landscape in northern Germany the two quotients differed significantly with reference to land use showing highest microbial colonization under grassland and lowest under beech forest. In contrast, C use efficiency was lowest in arable field under maize monoculture and highest in a wet grassland having a high organic C content.  相似文献   

13.
This study was conducted to improve our understanding of how earthworms and microorganisms interact in the decomposition of litter of low quality (high C : N ratio) grown under elevated atmospheric [CO2]. A microcosm approach was used to investigate the influence of endogeic earthworm (Aporrectodea caliginosa Savigny) activity on the decomposition of senescent Charlock mustard (Sinapis arvensis L.) litter produced under ambient and elevated [CO2]. Earthworms and microorganisms were exposed to litter which had changed in quality (C : N ratio) while growing under elevated [CO2]. After 50 d of incubation in microcosms, C mineralization (CO2 production) in the treatment with elevated‐[CO2] litter was significantly lower in comparison to the ambient‐[CO2] litter treatment. The input of Charlock mustard litter into the soil generally induced N immobilization and reduced N2O‐emission rates from soil. Earthworm activity enhanced CO2 production, but there was no relationship to litter quality. Although earthworm biomass was not affected by the lower quality of the elevated‐[CO2] litter, soil microbial biomass (Cmic, Nmic) was significantly decreased. Earthworms reduced Cmic and fungal biomass, the latter only in treatments without litter. Our study clearly showed that A. caliginosa used the litter grown under different [CO2] independent of its quality and that their effect on the litter‐decomposition process was also independent of litter quality. Soil microorganisms were shown to negatively react to small changes in Charlock mustard litter quality; therefore we expect that microbially mediated C and N cycling may change under future atmospheric [CO2].  相似文献   

14.
Land‐use patterns affect the quantity and quality of soil nutrients as well as microbial biomass and respiration in soil. However, few studies have been done to assess the influence of land‐use on soil and microbial characteristics of the alpine region on the northeastern Tibetan plateau. In order to understand the effect of land‐use management, we examined the chemical properties and microbial biomass of soils under three land‐use types including natural grassland, crop‐field (50 + y of biennial cropping and fallow) and abandoned old‐field (10 y) in the area. The results showed that the losses of soil organic carbon (SOC) and total nitrogen (TN) were about 45 and 43 per cent, respectively, due to cultivation for more than 50 y comparing with natural grassland. Because of the abandonment of cultivation for about a decade, SOC and TN were increased by 27 and 23 per cent, respectively, in comparison with the crop field. Microbial carbon (ranging from 357·5 to 761·6 mg kg−1 soil) in the old‐field was intermediate between the crop field and grassland. Microbial nitrogen (ranging from 29·9 to 106·7 mg kg−1 soil) and respiration (ranging from 60·4 to 96·4 mg CO2‐C g−1 Cmic d−1) were not significantly lower in the old‐field than those in the grassland. Thus it could be concluded that cultivation decreased the organic matter and microbial biomass in soils, while the adoption of abandonment has achieved some targets of grassland restoration in the alpine region of Gansu Province on the northeastern Tibetan plateau. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
An incubation experiment was carried out to investigate the interactions of two straw qualities differing in N content and two soils differently accustomed to straw additions. One soil under conventional farming management (CFM) regularly received straw, the other soil under organic farming management (OFM) only farmyard manure. The soils of the two sites were similar in texture, pH, cation‐exchange capacity, and glucosamine content. The soil from the OFM site had higher contents of organic C, total N, muramic acid, microbial biomass C and N (Cmic and Nmic), but a lower ergosterol content and lower ratios ergosterol to Cmic and fungal C to bacterial C. The straw from the CFM had threefold higher contents of total N, twofold higher contents of ergosterol and glucosamine, a 50% higher content of muramic acid, and a 30% higher fungal C–to–bacterial C ratio. The straw amendments led to significant net increases in Cmic, Nmic, and ergosterol. Microbial biomass C showed on average a 50% higher net increase in the organic than in the CFM soil. In contrast, the net increases in Nmic and ergosterol differed only slightly between the two soils after straw amendment. The CO2 evolution from the CFM soil always exceeded that from the OFM, by 50% or 200 µg (g soil)–1 in the nonamended control soil and by 55% or additional 600 µg (g soil)–1 in the two straw treatments. In both soils, 180 µg g–1 less was evolved as CO2‐C from the OFM straw. The metabolic quotient qCO2 was nearly twice as high in the control and in the straw treatments of the CFM soil compared with that of the OFM. In contrast, the difference in qCO2 was insignificant between the two straw qualities. Differences in the fungal‐community structure may explain to a large extent the difference in the microbial use of straw in the two soils under different managements.  相似文献   

16.
The values of the soil-ecological index and microbiological parameters (the carbon of microbial biomass Cmic, its ratio to the total organic carbon Cmic/Corg, and basal respiration) were determined for the soddy-podzolic, soddy-gley, bog-podzolic, meadow alluvial, and gray forest soils under different land uses (forest, fallow, cropland, and urban areas) in the Podolsk and Serpukhov districts of Moscow oblast (237 and 45 sampling points, respectively). The soil sampling from the upper 10 cm (without the litter horizon) was performed in September and October. To calculate the soil-ecological index, both soil (physicochemical and agrochemical) and climatic characteristics were taken into account. Its values for fallow, cropland, and urban ecosystems averaged 70.2, 72.8, and 64.2 points (n = 90, 17, and 24, respectively). For the soils of forest ecosystems, the average value of the soil-ecological index was lower (54.4; n = 151). At the same time, the micro-biological characteristics of the studied forest soils were generally higher than those in the soils of fallow, cropland, and urban ecosystems. In this context, to estimate the soil quality in different ecosystems on the basis of the soil-ecological index, the use of a correction coefficient for the biological properties of the soils (the Cmic content) was suggested. The ecological substantiation of this approach for assessing the quality of soils in different ecosystems is presented in the paper.  相似文献   

17.
A thorough understanding of the role of microbes in C cycling in relation to fire is important for estimation of C emissions and for development of guidelines for sustainable management of dry ecosystems. We investigated the seasonal changes and spatial distribution of soil total, dissolved organic C (DOC) and microbial biomass C during 18 months, quantified the soil CO2 emission in the beginning of the rainy season, and related these variables to the fire frequency in important dry vegetation types grassland, woodland and dry forest in Ethiopia. The soil C isotope ratios (δ13C) reflected the 15-fold decrease in the grass biomass along the vegetation gradient and the 12-fold increase in woody biomass in the opposite direction. Changes in δ13C down the soil profiles also suggested that in two of the grass-dominated sites woody plants were more frequent in the past. The soil C stock ranged from being 2.5 (dry forest) to 48 times (grassland) higher than the C stock in the aboveground plant biomass. The influence of fire in frequently burnt wooded grassland was evident as an unchanged or increasing total C content down the soil profile. DOC and microbial biomass measured with the fumigation-extraction method (Cmic) reflected the vertical distribution of soil organic matter (SOM). However, although SOM was stable throughout the year, seasonal fluctuations in Cmic and substrate-induced respiration (SIR) were large. In woodland and woodland-wooded grassland Cmic and SIR increased in the dry season, and gradually decreased during the following rainy season, confirming previous suggestions that microbes may play an important role in nutrient retention in the dry season. However, in dry forest and two wooded grasslands Cmic and SIR was stable throughout the rainy season, or even increased in this period, which could lead to enhanced competition with plants for nutrients. Both the range and the seasonal changes in soil microbial biomass C in dry tropical ecosystems may be wider than previously assumed. Neither SIR nor Cmic were good predictors of in situ soil respiration. The soil respiration was relatively high in infrequently burnt forest and woodland, while frequently burnt grasslands had lower rates, presumably because most C is released through dry season burning and not through decomposition in fire-prone systems. Shifts in the relative importance of the two pathways for C release from organic matter may have strong implications for C and nutrient cycling in seasonally dry tropical ecosystems.  相似文献   

18.
In the mineral horizons of the soils under different southern taiga forests (oak, archangel spruce, and aspen in the Kaluzhskie Zaseki Reserve of Kaluga region and the green moss spruce and spruce-broadleaved forests of the Zvenigorod Biological Station of Moscow State University in Moscow region), the carbon content in the microbial biomass (Cmic), the rate of the basal respiration (BR), and the specific microbial respiration (qCO2= BR/Cmic) were determined. The Cmic content was measured using the method of substrate-induced respiration (SIR). In the upper humus horizons of the soils, the Cmic content amounted to 762–2545 μg/g and the BR ranged from 1.59 to 7.55 μg CO2-C/g per h. The values of these parameters essentially decreased down the soil profiles. The portion of Cmic in the organic carbon of the humus horizons of the forest soils was 4.4 to 13.2%. The qCO2values increased with the depth in the soils of the Biological Station and did not change in the soils of the Reserve. The pool of Cmic and Corg and the microbial production of CO2 (BR) within the forest soil profiles are presented.  相似文献   

19.
Soil tillage is an agricultural practice that directly affects the global carbon cycle. Our study sought to assess the implications of adopting sunn hemp cover crops with different tillage practices on CO2 emissions for two soil types (clayey and sandy soil) cultivated with sugarcane in Brazil. The experimental design was a split‐plot with randomized blocks, with the main plots being with cover crop or fallow and sub‐plots being under conventional or minimum tillage. Our results indicate that during the first 50 days after soil tillage, the variation in soil CO2 emissions was stimulated by cover crop and soil tillage, while after that, it became dominated by the root respiration of sugarcane plants. We also found that over the first 97 days after the tillage, the clayey soil showed differences between minimum tillage with cover crop and fallow. Conversely, for sandy soil over the first 50 days following, there were differences between the tillage systems under cover cropping. Emissions from sugarcane rows were found to be greater than those from inter‐row positions. We concluded that soils under different textural classes had distinct patterns in terms of soil CO2 emissions. The correct quantification of CO2 emissions during the sugarcane renovation period should prioritize having a short assessment period (~50 days after soil tillage) as well as including measurements at row and inter‐row positions.  相似文献   

20.
Microbial biomass, microbial respiration, metabolic quotient (qCO2), Cmic/Corg ratio and nutrient status of the microflora was investigated in different layers of an aspen (Populus tremuloides Michx.) and pine forest (Pinus contorta Loud.) in southwest Alberta, Canada. Changes in these parameters with soil depth were assumed to reflect successional changes in aging litter materials. The microbial nutrient status was investigated by analysing the respiratory response of glucose and nutrient (N and P) supplemented microorganisms. A strong decline in qCO2 with soil depth indicated a more efficient C use by microorganisms in later stages of decay in both forests. Cmic/Corg ratio also declined in the aspen forest with soil depth but in the pine forest it was at a maximum in the mineral soil layer. Microbial nutrient status in aspen leaf litter and pine needle litter indicated N limitation or high N demand, but changes in microbial nutrient status with soil depth differed strongly between both forests. In the aspen forest N deficiency appeared to decline in later stages of decay whereas P deficiency increased. In contrast, in the pine forest microbial growth was restricted mainly by N availability in each of the layers. Analysis of the respiratory response of CNP-supplemented microorganisms indicated that growth ability of microorganisms is related to the fungal-bacterial ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号