首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1369篇
  免费   89篇
  国内免费   141篇
林业   41篇
农学   178篇
  128篇
综合类   479篇
农作物   159篇
水产渔业   62篇
畜牧兽医   108篇
园艺   230篇
植物保护   214篇
  2024年   2篇
  2023年   15篇
  2022年   32篇
  2021年   36篇
  2020年   50篇
  2019年   52篇
  2018年   38篇
  2017年   58篇
  2016年   84篇
  2015年   71篇
  2014年   85篇
  2013年   76篇
  2012年   118篇
  2011年   116篇
  2010年   86篇
  2009年   90篇
  2008年   84篇
  2007年   94篇
  2006年   69篇
  2005年   51篇
  2004年   52篇
  2003年   56篇
  2002年   37篇
  2001年   36篇
  2000年   19篇
  1999年   21篇
  1998年   13篇
  1997年   6篇
  1996年   5篇
  1995年   10篇
  1994年   7篇
  1993年   7篇
  1992年   2篇
  1991年   6篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
  1955年   1篇
排序方式: 共有1599条查询结果,搜索用时 388 毫秒
51.
【目的】通过系统研究冷鲜羊肉不同来源的三磷酸腺苷(adenosine triphosphate,ATP。包括肉中ATP、微生物ATP、肉表面ATP)在贮藏期间的变化规律,筛选能够表征冷鲜羊肉新鲜度变化的ATP指标,构建菌落总数和挥发性盐基氮预测模型,探究冷鲜羊肉新鲜度的预测新方法。【方法】以小尾寒羊背最长肌为试验材料,在空气密封包装0℃条件下分别贮藏0、1、3、5、7、9、11、13、15、17和21 d,分析冷鲜羊肉贮藏期间新鲜度指标(pH、色泽、挥发性盐基氮、菌落总数)与3种来源ATP(肉中ATP、微生物ATP、肉表面ATP)的变化,利用数据统计评价不同来源ATP的变化规律,并构建新鲜度指标的预测模型。【结果】冷鲜羊肉贮藏期间新鲜度指标菌落总数、挥发性盐基氮均呈现上升趋势,并均在贮藏17 d时超过国家标准限值;肉中ATP呈现不断下降趋势,微生物ATP与肉表面ATP均呈现上升趋势,与新鲜度指标变化趋势保持一致;冷鲜羊肉贮藏期间,肉中ATP、微生物ATP、肉表面ATP含量与菌落总数、挥发性盐基氮的相关系数(R)分别为-0.399、0.910、0.943和-0.357、0.725、0.907。肉表面ATP预测冷鲜羊肉菌落总数的最优模型为Boltzmann拟合模型,其公式为TVC(lg cfu/g)=7.649-4.069/(1+exp(x-5.807)/0.632)(R 2=0.903,P<0.001),肉表面ATP预测冷鲜羊肉挥发性盐基氮的最优模型为Expedc1拟合模型,其公式为TVB-N(mg/100 g)=2.493*exp(x/3.745)+3.057(R 2=0.888,P<0.001)。【结论】本研究明确了冷鲜羊肉表面ATP与菌落总数、挥发性盐基氮存在显著正相关性,确证了肉表面ATP可以作为冷鲜羊肉新鲜度表征指标;并构建了菌落总数和挥发性盐基氮最优预测模型,为冷鲜羊肉新鲜度快速检测提供了新的思路。  相似文献   
52.
【目的】克隆中国野生毛葡萄(Vitis quinquangularis)‘丹凤-2’芪合酶(stilbene synthase)基因(STS)并研究其功能,为提高欧洲葡萄(V. vinifera)的白粉病抗性及品质提供依据。【方法】利用同源克隆法获得中国野生毛葡萄‘丹凤-2’芪合酶基因VqSTS9和VqSTS21,构建植物过表达载体;用无核白单芽茎段诱导出分生愈伤组织,作为农杆菌介导法遗传转化的受体材料,获得抗性植株,经过不同水平检测,确定转基因植株;对野生型和转基因植株叶片人工接种葡萄白粉病菌(Uncinula necator),通过显微技术观察叶片受白粉病菌侵染后的情况,比较两者对白粉病的抗性;利用实时荧光定量PCR(qRT-PCR)分析野生型和转基因植株在自然条件和接种白粉病菌后STS及其相关基因的表达,用高效液相色谱法(HPLC)检测转基因植株中芪类物质的种类与含量。【结果】同源序列克隆得到VqSTS9(JQ868689)与VqSTS21(JQ868677)的cDNA序列,长度为1 179 bp。经PCR和Western blot检测,鉴定出过表达VqSTS9无核白植株4株和过表达VqSTS21无核白植株3株。显微观察发现,与野生型植株相比,转VqSTS9VqSTS21植株叶片上的菌丝生长较慢,表现出对白粉病的抗性。qRT-PCR结果表明,自然生长条件下,与野生型植株相比,转VqSTS9VqSTS21植株STS的表达量提高,STS上游苯丙氨酸裂解酶基因(PAL)、下游白藜芦醇糖基转移酶基因(RSGT)、转录因子基因(MYB14MYB15)的表达量均不同程度上升,而查尔酮合成酶基因(CHS)表达量降低;人工接种白粉病菌后,与野生型植株相比,转基因植株STS表达量显著上调。高效液相色谱分析表明,自然条件下,芪类物质主要以反式云杉新苷形式存在,转基因植株芪类物质的含量高于野生型植株;在接种白粉病菌诱导表达后,除了反式云杉新苷,还产生了反式白藜芦醇和葡萄素,即转基因植株体内芪类物质的种类和含量均有所增加。【结论】将VqSTS9VqSTS21转入无核白后,转基因植株STS的表达量增高,芪类物质的含量与种类增加,并抑制白粉病菌的生长。因此,中国野生毛葡萄‘丹凤-2’携带的VqSTS9VqSTS21能够增强欧洲葡萄对白粉病的抗性,‘丹凤-2’可用作葡萄抗病性育种的种质资源。  相似文献   
53.
以多花水仙花瓣抑制消减杂交文库获得的羟甲基戊二酰辅酶A合酶(HMGS)基因片段为基础,采用cDNA末端快速扩增(RACE)技术从黄花水仙2号和金盏银台中各克隆一条HMGS基因,两基因均含有一个1413bp的开放阅读框,编码470个氨基酸,但存在2个氨基酸差异.氨基酸序列分析表明:黄花水仙2号与葡萄、大豆、蓖麻和玉米HMGS基因的氨基酸相似系数分别为83%、82%、82%和81%.以水仙Actin基因为内参基因,采用荧光定量PCR方法分析HMGS基因在两品种的表达水平,结果表明:两品种HMGS基因的表达水平差异并不明显.  相似文献   
54.
栉孔扇贝神经节一氧化氮合酶的组织化学和免疫组化定位   总被引:5,自引:1,他引:5  
采用组织化学和免疫组化技术对栉孔扇贝(Chlamys farreri)神经节内的一氧化氮合酶(NOS)进行定位研究。组织化学显示,存在NOS的部位如下:脑神经节内纵行的神经纤维和表层的少量小细胞;足神经节表层的大量小细胞,中央大量水平分布的神经纤维;脏神经节中部大量水平分布的神经纤维,前叶内大量小细胞和神经纤维,后叶内少量小细胞和许多环行神经纤维,侧叶内大量似放射状分布的神经纤维;脑足和脑脏神经索内的神经纤维。免疫组化定位表明,神经型一氧化氮合酶(nNOS)和诱导型一氧化氮合酶(iNOS)在整个神经系统内均呈阴性;足神经节和脏神经节内有少量神经细胞呈内皮型一氧化氮合酶(eNOS)强阳性;各神经节和神经索内的部分小细胞和神经纤维呈eNOS弱阳性。栉孔扇贝进化上为较低等的贝类,NOS阳性神经细胞应主要分布于外周器官组织内。神经系统内大量的NOS可在其神经传导和免疫调节等方面发挥重要的作用。  相似文献   
55.
嗜酸小球菌对凡纳滨对虾体液免疫因子的影响   总被引:3,自引:0,他引:3  
在饲料中添加不同剂量的嗜酸小球菌投喂凡纳滨对虾,并在投喂后的20、40和60d,分别测定凡纳滨对虾血清中的一氧化氮合酶(NOS)、溶菌活力(Bacteriolytic activity)、总超氧化物歧化酶(T-SOD)、酸性磷酸酶(ACP)、碱性磷酸酶(AKP),并分析了这5种酶之间的相关性。结果显示,嗜酸小球菌能有效提高凡纳滨对虾体内的NOS、溶菌活力、T-SOD、ACP、AKP的活性;NOS与溶菌活力存在显著正相关性(P<0.05),与SOD存在显著负相关性,溶菌活力与AKP存在显著负相关性。表明在饲料中添加适量的嗜酸小球菌(剂量10mg/kg)可使凡纳滨对虾体液免疫因子活力到达较高的水平;凡纳滨对虾血清中一氧化氮合酶对于嗜酸小球菌的添加量较为敏感,可作为评价嗜酸小球菌使用效果的指标之一。  相似文献   
56.
AIM:To investigate the effects of siRNA targeting integrin-linked kinase (ILK) on the expression of glycogen synthase kinase 3β (GSK-3β) and β-catenin during epithelial-mesenchymal transition (EMT) in human kidney proximal tubular epithelial cell line HKC induced by high glucose. METHODS:HKC cells were divided into 4 groups:normal glucose (NG) group, high glucose (HG) group, HG+HK (a vector containing the non-specific siRNA designed as negative control) group and HG+ILK siRNA group. The inverted fluorescence microscope was used to examine the expression of green fluorescent protein (GFP). The expression of ILK at mRNA and protein levels was detected by RT-PCR and Western blotting. The expression of p-GSK-3β and β-catenin was observed by immunocytochemical staining. The protein expression of total GSK-3β, p-GSK-3β, nuclear β-catenin, total β-catenin, E-cadherin and α-smooth muscle actin (α-SMA) was measured by Western blotting. RESULTS:GFP was observed in HKC cells, indicating that the transfection was successful. Both the protein and mRNA of ILK were down-regulated in HG+ILK siRNA group compared with HG group and HG+HK group, but still higher than those in NG group. Silencing of ILK down-regulated the expression of p-GSK-3β and nuclear β-catenin. No difference of total GSK-3β or total β-catenin was observed among the 4 groups. CONCLUSION:These data support a functional role of ILK, GSK-3β and β-catenin in tubular EMT induced by high glucose. ILK may promote tubular EMT by regulating the activity of GSK-3β and β-catenin, the downstream effectors of the Wnt/β-catenin pathway.  相似文献   
57.
AIM:To establish a rat hyperlipidemia model for studying the aortic expression of heat shock protein 22 (HSP22), tumor necrosis factor alpha (TNF-α) and endothelial nitric oxide synthase (eNOS) and the effect of atorvastatin intervention. METHODS:Hyperlipidemia model was established in SD rats. Afterwards, the rats were divided into normal control group, high fat group and high fat+atorvastatin intervention group. The expression of HSP22 and TNF-α in the rat aortas was detected by immunohistochemical assay and the expression of eNOS was assessed by Western blotting. RESULTS:No detectable expression of HSP22 and TNF-α in the normal control group was observed. However, the expression of HSP22 and TNF-α was positive in the high fat group and the atorvastatin intervention group. The mean densities of HSP22 and TNF-α positive particles were significant lower in the atorvastatin intervention group as compared with high fat group (both P<0.05). The expression of eNOS protein in the high fat group and atorvastatin intervention group was significantly lower than that in normal control group (P<0.01). However, no marked difference of eNOS protein expression between high fat group and atorvastatins intervention group was observed. CONCLUSION: The expression of HSP22 and TNF-α in the rat aortas is increased in the hyperlipidemia rat model. This effect can be restored by atorvastatin treatment. The expression of eNOS in the rat aortas is decreased in the hyperlipidemia rat model, but this tendency could not be attenuated by atorvastatin.  相似文献   
58.
Germinal vesicle migration (GVM) and/or dissolution (GVD) were measured in goldfish oocytes, treated with 17α, 20β dihydroxyprogesterone (DHP) and other compounds considered to effect the cytoskeleton and oxidative phosphorylation,in vitro. Administration of DHP reinitiated meiotic maturation, increasing GVM and GVD in goldfish oocytes. Addition of 2,4-dinitrophenol (DNP) to the incubation medium significantly inhibited DHP-induced GVM and GVD. The DNP effect was found to be partially reversible after 24 h and could be reversed fully after a further delay of approximately 24h. Treatment of goldfish oocytes with demecolcine (DE; a colchicine derivative also known as colcemid) induces GVM to the micropyle without effecting GVD; while Cytochalasin-B which inhibits microfilament polymerization impairs both GVM and GVD. Administration of DNP, significantly inhibited DE-induced GVM, suggesting that GVM as well as GVD are dependent upon the process of oxidative phosphorylation. Addition of adenosine-5′ -triphosphate (ATP) at low concentrations (0.01–0.1 mM) did not effect DHP-induced or DNP-inhibited GVD in goldfish oocytes. The present results are consistent with the idea that migration of the oocyte nucleus during meiosis reinitiation has an energy requirement and involves participation by the cytoskeleton.  相似文献   
59.
Nitric oxide synthase (NOS) is an enzyme that catalyzes the formation of nitric oxide (NO), an important biological messenger from L-arginine. There are considerable evidence showing the expression of NOS in mammalian tissues. Information on distribution of NOS activities in various organs and tissues of fish is rare. Non-functional NOS activities were documented in fish semi-quantitatively either by an indirect nicotine-adenine-dinucleotide-phosphate diaphorase (NADPH-d) activity histochemical staining method or by an immunohistochemical method using a cross-reacting antibody to brain NOS. Report on the functional levels of NOS activities in fish is lacking. This report represent the first attempt to document the functional NOS levels in various fish organs and tissues. Constitutive NOS (cNOS) activities in various organs of big-head carp (Aristichthys nobilis) was measured by a chemiluminescence method with a detection limit as low as 10 mol of NO produced. It was found that constitutive NOS activity was highest in the brain, followed by the intestine, stomach, retina, olfactory lobe, swim bladder, skeletal muscle, heart, kidney, ovary and liver. NOS activity could not be detected in the gill filaments. Omission of NADPH in the reaction mixture caused a 57–100% decrease in cNOS activities. However, omission of arginine in the mixture only caused a 56–87% drop in cNOS activities. When compared with cNOS activities documented from other species, a similar pattern of cNOS activities in the various organs and tissues of big-head carp could be seen.  相似文献   
60.
利用RT-PCR和RACE技术对海南龙血树查尔酮合酶基因进行克隆,得到1条1 456 bp的cDNA序列,命名为DcCHS。DcCHS含有1 173 bp的阅读框架、99 bp的5′非编码区和184 bp的3′非编码区,编码390个氨基酸。DcCHS与其他植物的CHS氨基酸序列同源性高达84%以上,具有高度保守的CHS_like结构域、活性位点以及信号序列。推测DcCHS的分子量为42.7 ku,等电点pI为6.14,稳定性极差,具有15个磷酸化位点,无跨膜结构,无信号肽,亚细胞定位在细胞质的可能性较大,并预测了蛋白质的二级、三级结构。组织特异性分析结果表明,DcCHS在花中的表达远远高于根、茎、叶和果实。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号