首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1965篇
  免费   187篇
  国内免费   215篇
林业   43篇
农学   147篇
基础科学   174篇
  750篇
综合类   428篇
农作物   60篇
水产渔业   592篇
畜牧兽医   51篇
园艺   14篇
植物保护   108篇
  2024年   7篇
  2023年   42篇
  2022年   56篇
  2021年   51篇
  2020年   96篇
  2019年   96篇
  2018年   99篇
  2017年   143篇
  2016年   130篇
  2015年   71篇
  2014年   122篇
  2013年   261篇
  2012年   192篇
  2011年   130篇
  2010年   106篇
  2009年   96篇
  2008年   94篇
  2007年   92篇
  2006年   67篇
  2005年   52篇
  2004年   51篇
  2003年   48篇
  2002年   52篇
  2001年   28篇
  2000年   21篇
  1999年   22篇
  1998年   22篇
  1997年   20篇
  1996年   17篇
  1995年   17篇
  1994年   14篇
  1993年   7篇
  1992年   11篇
  1991年   6篇
  1990年   6篇
  1989年   5篇
  1988年   9篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有2367条查询结果,搜索用时 93 毫秒
21.
Land retirement is ceasing irrigation withthe goal of reducing load, in general, ofdissolved constituents and, in particular,of trace elements, present in subsurfacedrainage generated from irrigated lands. Retirement is achieved through a process ofgoal setting, strategy development anddetermining effects, developing landselection criteria, implementation, andmonitoring. In this study, effects of landretirement are evaluated using hydrologic,soil and economic models as well as resultsfrom a field demonstration study. From themodeling and field monitoring, a process isdeveloped to meet the goals of a landretirement program in the San JoaquinValley of California.Potential negative effects listed for landretirement included loss of agriculturalproductivity, perhaps permanently, and lossof revenue to surrounding communities. Uncertainties included those associatedwith reuse of retired lands as wildlifehabitat, with retired-land maintenanceincluding dust control, with potentialpreservation of retired lands in reservefor future re-introduction to irrigated ordry-land agriculture, and withinstitutional changes concerning repaymentof federal and state water contracts. Benefits would accrue from economic returnto the landowner from the sale of property,the sale or lease of irrigation watersupply, the reduced cost of handlingdrainage, and allocation of freed-up waterto beneficial uses, and the reduced risk ofselenium exposure to fish and wildlife.A recommended sequential approach to selectand manage retired land is to identifyprimary objectives; formulate and implementarea-specific land retirement scenarios;measure biologic, hydrologic, soils andeconomic consequences in the short term andthe long term and manage and monitorretired lands based on dynamic biologic,hydrologic and soil conditions.  相似文献   
22.
咸水灌溉下土壤水盐变化的试验研究   总被引:2,自引:2,他引:2  
2002年在内蒙古河套灌区红卫节水示范园进行了咸水灌溉试验,分析试验结果得出:咸水灌溉下的土壤经过秋浇后含盐量可以降到咸水灌溉前水平。以荷兰Wageningen农业大学等单位开发的土壤水分大气作物系统模拟软件SWAP为工具,应用示范园的土壤、水、盐分试验资料对模型的参数进行了率定和验证,模型模拟结果和田间试验结果符合较好。  相似文献   
23.
新疆盐碱地长期利用盐水灌溉土壤盐分变化   总被引:3,自引:1,他引:3  
在地下水位3~5m、壤质土壤条件下,利用盐碱地时用2~5g/L盐化水灌溉,土壤1m剖面均为脱盐状况。灌溉盐化水15年后,1m土壤残留阴离子浓度较小,多点平均为3.709毫克当量/100克土。其中HCO-3相对较多,1m多点平均为0.404毫克当量/100克土。K++Na+浓度很大,1m多点平均为2.492毫克当量/100克土。这时,土壤1m全盐多点平均为0.248%,在灌溉水矿化度不直接危害作物生长时,不影响耕作和作物正常生长。由此可见,盐化水在盐碱地上无排灌溉,是可行的。  相似文献   
24.
为了明确温室生产中不同耕作措施的水热盐调控效果,采用温室小区试验方法,以翻耕(CK)、翻耕结合地表覆盖地膜(M)、翻耕结合秸秆深埋(J)为对照,研究了翻耕结合地表覆盖地膜结合秸秆深埋(J+M)措施对温室土壤水热盐动态变化的影响。结果表明,与M、J及CK处理相比,J+M处理全生育期平均土壤含水率可分别提高8.96%、5.45%、14.32%,土壤温度分别提高3.35%、5.21%及8.32%,土壤全盐量分别降低24.44%、19.65%、26.64%,这一结果可为宁夏温室种植实施地膜覆盖与秸秆深埋改良措施提供参考。  相似文献   
25.
Recent community based actions to ensure the sustainability of irrigation and protection of associated ecosystems in the Murrumbidgee Irrigation Area (MIA) of Australia has seen the implementation of a regional Land and Water Management Plan. This aims to improve land and water management within the irrigation area and minimise downstream impacts associated with irrigation. One of the plan objectives is to decrease current salt loads generated from subsurface drainage in perennial horticulture within the area from 20 000 tonnes/year to 17 000 tonnes/year. In order to meet such objectives Controlled Water table Management (CWM) is being investigated as a possible ‘Best Management Practice’, to reduce drainage volumes and salt loads.During 2000–2002 a trial was conducted on a 15 ha subsurface drained vineyard. This compared a traditional unmanaged subsurface drainage system with a controlled drainage system utilizing weirs to maintain water tables and changes in irrigation scheduling to maximize the potential crop use of a shallow water table. Drainage volumes, salt loads and water table elevations throughout the field were monitored to investigate the effects of controlled drainage on drain flows and salt loads.Results from the experiment showed that controlled drainage significantly reduced drainage volumes and salt loads compared to unmanaged systems. However, there were marked increases in soil salinity which will need to be carefully monitored and managed.  相似文献   
26.
Managing secondary dryland salinity: Options and challenges   总被引:1,自引:0,他引:1  
Salt occurs naturally at high levels in the subsoils of most Australian agricultural land. As a result of clearing native vegetation, groundwater tables have risen, mobilising the stored salt and causing adverse impacts on farmland, infrastructure, water resources, and biodiversity. The main action required to prevent groundwater tables from rising is establishment of perennial plants, either herbaceous (pastures or crops) or woody (trees and shrubs). Recent technical and economic research has emphasised how difficult it will be to establish sufficient perennials to get control of groundwater tables. Where watertables are already shallow, the options for farmers are salt-tolerant plants (e.g. saltbush for grazing) or engineering (e.g. deep open drains). The existing options for farm-level salinity management are reviewed, with mixed but somewhat disappointing findings regarding their suitability for addressing salinity. However, there are also a number of good prospects for development of new and better options for plant-based management of salinity, and these are described.  相似文献   
27.
Use of poor-quality groundwater has become inevitable for irrigation to compensate rapidly increasing water demands in many arid and semiarid regions. Salinity and sodicity are the principal soil and water quality concerns in such areas. Many saline–sodic and sodic soils have saline or saline–sodic subsurface drainage waters. Amelioration of these soils needs a source of calcium (Ca2+) that can replace the excess exchangeable sodium (Na+). Most of these soils, however, contain calcite (CaCO3) of extremely low solubility. The native calcite does not supply adequate levels of Ca2+ for soil amelioration as do other chemical amendments. Phytoremediation may help ameliorate such soils through cultivation of certain crops tolerant to ambient soil salinity and sodicity. This amelioration strategy works through plant root action to help dissolve CaCO3 to supply adequate Ca2+ without the application of an amendment. During a 3-year field experiment conducted under irrigated conditions, we evaluated phytoremediation against soil application of gypsum and farm manure, and water treatment with sulphuric acid on a calcareous saline–sodic soil (pHs=8.0–8.4, ECe=24–32 dS m−1, SAR=57–78, CaCO3=45–50 g kg−1 for the top 0.15 m depth; Calcic Haplosalids). A saline–sodic water (EC=2.9–3.4 dS m−1, SAR=12.0–19.4, RSC=4.6–10.0 mmolc l−1, SARadj=15.6–18.4) was used to irrigate the rice (Oryza sativa L.) and wheat (Triticum aestivum L.) crops grown in rotation. Active desalinisation and desodication processes were observed in all the treatments. After the final wheat crop, the 1.2 m soil profile ECe was 7±0.5 dS m−1 and SAR was 15±2 with non-significant treatment differences, indicating comparable soil amelioration effect of phytoremediation with other treatments. Better crop yields were obtained from the manure-treated plots, owing to its annual addition to the soil that possibly improved soil fertility. Phytoremediation needed minimum capital input because no initial investment was made to purchase the amendments.  相似文献   
28.
The need for a better understanding of the interaction between irrigation practices and the elevation and quality of the water table is of paramount importance for developing irrigation management strategies to ameliorate the regional problems of elevated saline water tables in the San Joaquin Valley, California. An area of approximately 3000 ha which includes portions of the Diener Ranch and the adjacent University of California, Westside Research and Extension Center, located south of Five Points in the Westlands Water District on the west side of the San Joaquin Valley was chosen for extensive field measurements. Field work consisted of four main activities namely, field instrumentation, collection of records of field activities, periodic data collection, and analyses of field data. Field measurements of water table carried out during 1994 indicated that the water table elevation was sensitive to the irrigation practices. There was a general increase in the area with a water table close to the surface during the irrigation season, and a return to water table elevations similar to the starting conditions at the end of the season. During the study period, the surface water quality deteriorated more in areas irrigated with reuse water and persisted through the end of the season. Depth averaged electrical conductivity for the study area over 6.5 m decreased between December 1993 and December 1994. Vertical hydraulic gradients in the saturated zone, were found to be an order of magnitude larger than horizontal gradients. The direction of vertical gradients changed, with downward gradients following pre-irrigations and upward gradients later in the season, when crop water requirements increased. Based on the results of the field study, it can be concluded that the irrigation management practices have a direct effect on local water table response as well as on water quality. Therefore, irrigation practices that promote less deep percolation losses may be helpful in controlling the water table rise.  相似文献   
29.
The traditional approach ofinstalling subsurface drainage systems tosolve shallow ground water problems is notfeasible along the west side of the SanJoaquin Valley of California because of thelack of drain water disposal methods thatare economical, technically feasible, andenvironmentally friendly. Thus, optionssuch as drainage reduction through improvedirrigation and drain water reuse are beingexamined as methods for coping with thesubsurface drainage problem. This paperdiscusses options for reducing subsurfacedrainage through improved irrigationpractices. Options are discussed forimproving irrigation system design such asupgrading existing irrigation methods andconverting to systems with higher potentialirrigation efficiencies. Methods forimproving water management are alsopresented. Case studies on upgradingexisting systems or converting to otherirrigation methods are presented along with study results of the effect of variouspolicies on reducing subsurface drainage.  相似文献   
30.
棉田膜内与膜间土壤溶液含盐量的变化   总被引:1,自引:0,他引:1  
用定期取表层土样测定其电导率和在不同深度埋设盐分传感器探头的方法 ,在作物生长季节内 ,监测了棉田膜内和膜间不同深度的土壤溶液含盐量变化。结果为 :1棉田膜内与膜间表层土壤和 1 0 cm、30 cm深土壤溶液含盐量变化较大 ,且规律相同。未灌水时上升 ,灌水后迅速下降。膜间未灌水期间的含盐量上升幅度大于膜内 ,灌水对膜内和膜间表土洗盐、1 0 cm、30 cm深土壤溶液含盐量的降低作用没有差别。降雨可引起膜内和膜间 1 0 cm深土壤溶液电导率的变化 ,这个影响也是膜间大于膜内。 2 60 cm深的土壤溶液不存在明显的盐分累积现象 ,灌水可使这里的土壤溶液含盐量缓慢降低 ,膜间的降低过程快于膜内  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号