首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1930篇
  免费   208篇
  国内免费   209篇
林业   43篇
农学   147篇
基础科学   174篇
  740篇
综合类   428篇
农作物   58篇
水产渔业   584篇
畜牧兽医   51篇
园艺   14篇
植物保护   108篇
  2024年   4篇
  2023年   42篇
  2022年   56篇
  2021年   49篇
  2020年   96篇
  2019年   89篇
  2018年   99篇
  2017年   143篇
  2016年   130篇
  2015年   71篇
  2014年   122篇
  2013年   261篇
  2012年   192篇
  2011年   130篇
  2010年   106篇
  2009年   96篇
  2008年   94篇
  2007年   92篇
  2006年   67篇
  2005年   52篇
  2004年   51篇
  2003年   48篇
  2002年   50篇
  2001年   28篇
  2000年   20篇
  1999年   21篇
  1998年   21篇
  1997年   20篇
  1996年   16篇
  1995年   16篇
  1994年   14篇
  1993年   7篇
  1992年   10篇
  1991年   6篇
  1990年   6篇
  1989年   5篇
  1988年   9篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有2347条查询结果,搜索用时 31 毫秒
81.
ABSTRACT

To assess seed germination parameters and identifying tolerant varieties, seeds of nine tall fescue varieties (Festuca arundinacea Schreb.) were germinated under various salinity levels for 14 days. Tall fescue is considered ‘moderately tolerant’ to salinity stress, but our study revealed a remarkable diversity among the tested varieties. Armani, Essential, Fatcat, and Starlett were found to reach the same final germination (>90%), irrespective of NaCl concentration up to 15 ds m?1 NaCl; Asterix and Meandre expressed lower germination under the highest salinity level (>75%); and final germination decreased in Eyecandy, Rhizing star, and Thomahawk gradually with increasing salinity (>55%). The main effect of increasing salinity was a delay in germination, and our study suggests that the recording of final germination, which is performed on day-14 in a standard germination test, should be postponed in order to understand the full effect of salinity on germination potential. Nonetheless, a delay in germination will affect turf quality negatively and hence there is good reason to test for salinity tolerance when choosing a variety for sowing on saline soil. Further, our findings indicate a future perspective for breeding for improved salinity tolerance in tall fescue by the identification of salinity-tolerant breeding lines or varieties.  相似文献   
82.
Salinity has a two‐phase effect on plant growth, an osmotic effect due to salts in the outside solution and ion toxicity in a second phase due to salt build‐up in transpiring leaves. To elucidate salt‐resistance mechanisms in the first phase of salt stress, we studied the biochemical reaction of salt‐resistant and salt‐sensitive wheat (Triticum aestivum L.) genotypes at protein level after 10 d exposure to 125 mM–NaCl salinity (first phase of salt stress) and the variation of salt resistance among the genotypes after 30 d exposure to 125 mM–NaCl salinity (second phase of salt stress) in solution culture experiments in a growth chamber. The three genotypes differed significantly in absolute and relative shoot and root dry weights after 30 d exposure to NaCl salinity. SARC‐1 produced the maximum and 7‐Cerros the minimum shoot dry weights under salinity relative to control. A highly significant negative correlation (r2 = –0.99) was observed between salt resistance (% shoot dry weight under salinity relative to control) and shoot Na+ concentration of the wheat genotypes studied. However, the salt‐resistant and salt‐sensitive genotypes showed a similar biochemical reaction at the level of proteins after 10 d exposure to 125 mM NaCl. In both genotypes, the expression of more than 50% proteins was changed, but the difference between the genotypes in various categories of protein change (up‐regulated, down‐regulated, disappeared, and new‐appeared) was only 1%–8%. It is concluded that the initial biochemical reaction to salinity at protein level in wheat is an unspecific response and not a specific adaptation to salinity.  相似文献   
83.
In this study, long-term effects of salinity and high boron (B) on subcellular distribution of sugars in wheat leaves were investigated. Four treatments with three replications of each; control, high B, sodium chloride (NaCl) and NaCl + high B, respectively were established according to completely randomized design. Plants were grown hydroponically and harvested after 6 weeks onset of experiment. NaCl treatment markedly decreased the shoot fresh and dry weight compared to high B or NaCl + high Boron. It increased the sugar concentrations in subcellular compartments, whereas decreased in NaCl + high B. Contrary, NaCl either alone or in combination with high B decreased the sugar contents in whole leaf compared to control or high B. Overall, higher concentrations of sugars were observed in symplast compared to apoplast indicating the symplast as major compartment for sugar transport. Furthermore, wheat plants accumulate sugars in subcellular compartments to maintain their growth under stress conditions.  相似文献   
84.
Abstract. The worldwide occurrence of saline sodic and sodic soils on more than half a billion hectares warrants attention for their efficient, inexpensive and environmentally acceptable management. These soils can be ameliorated by providing a source of calcium (Ca2+) to replace excess sodium (Na+) from the cation exchange sites. Although chemical amendments have long been used to ameliorate such soils, the chemical process has become costly during the last two decades in several developing countries. As a low‐cost and environmentally acceptable strategy, the cultivation of certain salt tolerant forage species on calcareous sodic and saline sodic soils, i.e. phytoremediation, has gained interest among scientists and farmers in recent years. In a field study conducted at three calcareous saline sodic sites (pHs=8.1–8.8, ECe=7.8–12.5 dS m–1, SAR=30.6–76.1) in the Indus Plains of Pakistan, we compared chemical and phytoremediation methods. There were four treatments; two involved plants: Kallar grass (Leptochloa fusca (L.) Kunth), and sesbania (Sesbania bispinosa (Jacq.) W. Wight). The other two treatments were uncropped: soil application of gypsum and an untreated control. All treatments were irrigated with canal water (EC=0.22–0.28 dS m–1). The plant species were grown for one season (5–6 months). Sesbania produced more forage yield (34 t ha–1) than Kallar grass (23 t ha–1). Phytoremediation and chemical treatments resulted in similar decreases in soil salinity and sodicity, indicating that phytoremediation may replace or supplement the more costly chemical approach. The soil amelioration potential of sesbania was similar to that of the Kallar grass, which suggests that moderately saline sodic calcareous soils can be improved by growing a forage legume with market value.  相似文献   
85.
The use of vermicompost as a biological fertilizer under salinity stress conditions was tested in this research. Accordingly, the seeds of Medicago rigidula were grown in the greenhouse. The experiment was performed based on factorial arrangement in a completely randomized design using 5 replications. Application rates of vermicompost were 0, 10, 20 and 30%. Salinity stress was conducted in three levels (0, 50 and 100 mM sodium chloride (NaCl)). The highest and the lowest values of the plant survival capacity (%), shoot dry weight (g), leaf relative water content (LRWC) (%), total chlorophyll content (%), leaf area (cm2), total nitrogen content (TNC) (%) and potassium (K) content (%) of the plant tissues were found in VC4 × SL1 and VC1 × SL3 treatments, respectively. Whereas, the maximum and minimum values of root dry weight and root:shoot ratio were seen in VC1 × SL3 and VC4 × SL1 treatments, respectively.  相似文献   
86.
The present research was conducted to study the responses of ‘Malas–e–Saveh’ (M) and ‘Shishe–Kab’ (Sh) Iranian pomegranates to sodium chloride (NaCl) stress under greenhouse and field conditions. Treatments included waters electrical conductivity (EC = 1.5, 3, 6, 9 and 12 dS m?1 for greenhouse) and (EC = 1.05 as control, 4.61 and 7.46 dS m?1 for field studies). Interactive effects of salinity × variety indicated the highest chlorophyll and leaf potassium concentration, and the lowest leaf chloride and sodium in control under greenhouse study. Non-photochemical quenching, effective quantum yield of photochemical energy conversion in PSII reduced under the highest salinity level in field, however, basal quantum yield of non-photochemical processes in PSII increased in the highest salinity. Sodium and chloride increased with increased in salinity. Calcium, magnesium and iron significantly decreased with increased in salinity. It seems that there are differences between pomegranate cultivars and Malas-e-Saveh is more tolerant compared with Shishe Kab.  相似文献   
87.
Mussels close their shell as a protective strategy and the quantification of this behavioral marker may represent an alarm signal when they are exposed to environmental stressors. In the present study, we investigated the ability of the Mediterranean mussel Mytilus galloprovincialis to recover and then the resilience or inertia of valve activity after a pulsing exposition to diverse levels of salinity (5, 10, 20, and 35 PSU as reference value). The trial simulated an event of drastic and sudden reduction of seawater salinity thus mimicking an event of flash flood from intense rain. Valve gaping and movements were measured in continuous cycle for 10 days using a customized magneto-electric device which uses Hall sensors. Results showed that under normal conditions of salinity (35 PSU), the general pattern of valve movements was a continuously open state with sporadic spikes indicating a closing motion. At salinity of 5, PSU mussels reacted by closing their valves, leading to a 77% mortality on the 4th day. At salinity of 10, PSU animals were observed with closed valves for the entire duration of the exposure and no mortality occurred, they showed a significant reduction in the valve activity once the reference value of salinity was re-established. In contrast, salinity of 20 PSU did not trigger a significant behavioral response. Interestingly, there no define rhythms of valve movements were recorded during salinity challenges.  相似文献   
88.
The present investigation was aimed to evaluate the physiological mechanism of adaptation of salt tolerance in Suaeda fruticosa at various phenological stages with varying levels of soil salinity of the selected districts via determining ion accumulation, growth response, osmolyte accumulation, and antioxidant enzyme activities. Randomized complete block design in the selected districts was used with plots sized 6 m × 9 m2, having 5 rows that were 2 m long and 30 cm apart, in triplicate. Suaeda fruticosa maintained its chlorophyll a/b ratio even at the greater electrical conductivity of rhizospheric soil at Peshawar, which is indicative of its better adaptability. For Suaeda fruticosa it has been concluded that the species collected from District Peshawar exhibited a significant increase in contents of sugar, proline, and protein as compared to the species collected from other districts, whereas superoxide dismutase, peroxidase, and carotenoid content was maximum for the species collected from District Mardan.  相似文献   
89.
A synthetic superabsorbent polymer used to improve water-holding capacity of soils was investigated. Two water qualities, two irrigation intervals, and two application rates were administered to 24 treated soil columns. Polymer absorbance of water was proportional with time but inversely proportional to salinity levels. After a threshold period, which was longer for the lower water application rate, cumulative evaporation (E = √ct) increased with decrease in irrigation interval and the type of amendments added in order of control > peat moss > the absorbent copolymer. The value of c was largely determined by the water application rate and the type of the soil amendment. Salt and moisture distributions were governed by the amount of water conserved. Peat moss was more effective in leaching salts. The quantity of water applied per irrigation, rather than cumulative amount, seemed to affect water conservation, whereas the cumulative amount of water affected electrical conductivity–sodium absorption ratio (EC-SAR) distributions.  相似文献   
90.
Salinity is considered as a major abiotic stress affecting crop production in arid and semi-arid regions in the world. Surfactants can improve water-use efficiency in saline soils and improve crop yield. This study was conducted to evaluate the effect of salinity stress and surfactant treatments on photosynthetic pigments and nutrition elements of fenugreek in the Crop and Soil Science greenhouse at the Pennsylvania State University (University Park, PA, USA) in 2013. The experiment was conducted using a 5 × 3 factorial randomized complete block design with three replications. Factor A consisted of five salinity levels [0, 4, 6, 8, and 10 ds m–1 sodium chloride (NaCl)] while factor B consisted of three nonionic surfactant levels (0, 1, and 3 ppm). The results indicated a stepwise reduction in photosynthetic pigments of fenugreek as salt stress increased, however, Peroxidase and polyphenol oxidase activity increased in fenugreek leaves as salinity stress increased. Levels of surfactant application had different effects on nutrient uptake. Some nutrient elements such as sodium, phosphorus, copper, manganese, and zinc content increased while others decreased at high salinity conditions. Surfactant application rate of 3 ppm at moderate and high salinity levels and 1 ppm at lower salinity levels had a good performance in enhancing the total photosynthetic and carotenoid activities in fenugreek.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号