首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23140篇
  免费   1384篇
  国内免费   3853篇
林业   902篇
农学   4202篇
基础科学   1101篇
  3808篇
综合类   11498篇
农作物   2702篇
水产渔业   60篇
畜牧兽医   731篇
园艺   429篇
植物保护   2944篇
  2024年   132篇
  2023年   456篇
  2022年   752篇
  2021年   819篇
  2020年   876篇
  2019年   851篇
  2018年   781篇
  2017年   1072篇
  2016年   1211篇
  2015年   1015篇
  2014年   1177篇
  2013年   1500篇
  2012年   1731篇
  2011年   1488篇
  2010年   1362篇
  2009年   1383篇
  2008年   1178篇
  2007年   1316篇
  2006年   1108篇
  2005年   1013篇
  2004年   754篇
  2003年   683篇
  2002年   541篇
  2001年   599篇
  2000年   548篇
  1999年   472篇
  1998年   424篇
  1997年   381篇
  1996年   378篇
  1995年   342篇
  1994年   280篇
  1993年   282篇
  1992年   289篇
  1991年   248篇
  1990年   219篇
  1989年   171篇
  1988年   133篇
  1987年   109篇
  1986年   77篇
  1985年   32篇
  1984年   41篇
  1982年   24篇
  1981年   21篇
  1980年   17篇
  1979年   11篇
  1978年   20篇
  1977年   15篇
  1976年   19篇
  1962年   11篇
  1955年   10篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
81.
Barley, oat and wheat were used as both inappropriate hosts (IH) and appropriate hosts (AH) for three formae speciales of the fungus Blumeria graminis, the causal agent of powdery mildew disease. Treatment with either the glucose analog 2-deoxy- -glucose (DDG) or with -mannose dramatically suppressed penetration resistance in IH and to a much lesser extent in AH combinations. Other effects of DDG and -mannose were strikingly dissimilar. DDG greatly reduced localized autofluorescence at fungal attack sites on epidermal cells, and prevented hypersensitive epidermal cell death (HR). -mannose had little effect on autofluorescence or HR. DDG arrested the development of fungal haustoria and apparently prohibited biotrophy leading to secondary hyphae. -mannose allowed haustorial development and functional biotrophy leading to the production of elongating secondary hyphae. This suggests that B. graminis is in some way capable of utilizing -mannose as a carbon substrate. Results with IH combinations paralleled those of known mlo -barley responses to DDG and -mannose. Results are discussed in relation to specific physiological processes known to be influenced by either DDG or by -mannose, or by both compounds.  相似文献   
82.
20%多效唑·甲哌Wong微乳剂防止小麦倒伏和增产机理研究   总被引:2,自引:0,他引:2  
冬小麦二棱期喷施植物生长调节剂20%多效唑·甲哌鎓微乳剂375 mL/hm2,可以显著抑制茎秆基部节间伸长,增加各节间充实度,其中赤霉素(Gas)和生长素(IAA)降低,可显著增强小麦抗倒伏能力和降低田间倒伏率.处理还协调了穗数、穗粒数和粒重的关系,增产幅度6.2%~28.6%.增产原因可能在于促进籽粒灌浆强,增加籽粒中内源Gas、IAA、细胞分裂素(CTKs)的水平,增强了籽粒库活性,同时促进茎叶中干物质向籽粒运转.  相似文献   
83.
 小麦(Triticum aestivum)品种洛夫林10和叶锈菌小种366组成不亲和组合,小麦叶片发生过敏性坏死反应(HR)是小麦抵抗叶锈菌侵染的重要因素。在接种前给小麦叶片分别预注射微管解聚药物磺草硝(oryzalin)和微丝解聚药物细胞松弛素D (cytochalasin D,CD),结果表明2种药物注射使得寄主因叶锈菌侵染诱导的细胞过敏性坏死数目明显减少,并且注射药物的浓度越大,寄主细胞发生HR的数量越少。说明肌动蛋白和微管蛋白的聚合状态是诱发小麦叶片发生HR防卫反应所必需的,细胞骨架在小麦抵抗叶锈菌侵染过程中可能起着重要作用。  相似文献   
84.
转 Bt基因抗虫棉对棉大卷叶螟抗性的研究   总被引:7,自引:0,他引:7  
:转Bt基因抗虫棉对棉铃虫有很好的抗性,对棉大卷叶螟(SyleptaderogataFabricius)的抗性未见报道。作者研究表明,棉大卷叶螟在棉田为聚集分布型,低龄幼虫有集中为害习性;抗虫棉对其有很好的抗性,平均虫株率为2.2%,较常规棉中棉所12降低96.6%;百株虫量为133.8头,较常规棉降低88.4%。  相似文献   
85.
Nymphal development time and fecundity ofSitobion avenae (F.) (Homoptera: Aphididae) were determined on nine widespread wheat varieties cultivated in Tekirdağ Region in Turkey. Tests were carried out in controlled environment chambers (25±1°C, 65±5% r.h.; 16:8, L:D). Development time (±S.E.) ranged from 5.75±0.25 to 7.20±0.20 days. Fecundity per female ofS. avenae was found to be the highest (12.87±1.50) on wheat cv. ‘Sana’. In this investigation cvs. ‘MV-17’, ‘Miryana’, ‘Pehlivan’ and ‘Saraybosna’ were particularly resistant againstS. avenae. http://www.phytoparasitica.org posting July 8, 2002.  相似文献   
86.
日光温室黄瓜栽培CO_2浓度的消长规律初探   总被引:7,自引:0,他引:7  
近 3a(年 )的研究结果表明 :日光温室内CO2 浓度有明显的季节变化和日变化。在整个生长期内因通风时间和通风量的不同 ,日光温室内的CO2 浓度 11月和 3月较高 ,5月较低。各时期日变化基本相同 ,但变化幅度因季节而异 ,上午随Pn的逐渐增大而下降 ,中午 12 :0 0~ 14 :0 0时降至最低 ,下午又随Pn的减小而缓慢回升。叶片的光合作用、呼吸作用和土壤呼吸是影响日光温室内CO2 浓度日变化的主要因素。有机肥施用量对室内土壤呼吸和日光温室CO2 浓度有较大影响 ,在有机肥充足的条件下 ,室内CO2 浓度基本满足黄瓜光合作用的需要 ,无须补施 ,如果在作物生长期间再定时随水向土壤中冲施有机肥 ,效果就更好  相似文献   
87.
Summary The performance of Parthenium hysterophorus , native to the tropical Americas and invasive to several countries, was evaluated for response to soil quality. Phenological (six stages) and quantitative growth variables [relative growth rates in height (Rh) and diameter (Rd)] were measured every fortnight. Based on harvest data, the variables, root:shoot (R:S) ratio, specific leaf area (SLA), relative growth rate in biomass (Rw), net assimilation rate (NAR) and dry matter allocation to plant components, were determined. High clay content in soils prolonged the rosette stage, enhanced Rh and Rd and hampered root growth, but promoted biomass allocation to shoots. The extreme degree of plant mortality was observed, with only 33.3% individuals surviving to reproduce in the soils with highest clay contents. This appears to be one of the most important findings that certainly has a major bearing on the range of adaptation of the weed. Seed mass declined whereas seed production increased in relatively coarser soils with the exception of nearly pure sand. In soils rich in clay, plants produced a smaller number of larger seeds. These data suggest that variation in fundamental functional traits would enable P. hysterophorus to adjust to a variety of habitat conditions.  相似文献   
88.
Olive processing wastes for weed control   总被引:3,自引:0,他引:3  
The herbicidal effect of olive processing wastes (OPW) on some weed species in wheat, maize and sunflower was investigated in the Aegean region of Turkey. In trials with maize and sunflower, OPW was applied as an air‐dried solid form at 3 and 4.5 kg m?2. It provided an effectiveness level on Portulaca oleracea of 63–98%. In trials with wheat, OPW was applied as solid and liquid forms, each at two different doses, namely 4.5 and 6 kg m?2 (solid), and 5 and 10 L m?2 (liquid). Solid OPW provided a reduction in total weed coverage of 75% and 81% at doses of 4.5 and 6 kg m?2, respectively. The weed coverage reduction by liquid OPW was 39% and 62% with 5 and 10 L m?2, respectively. Apart from 12–26% reduction of the number of germinating seeds, OPW showed no toxic effects on maize and sunflower. Wheat was affected in the initial stages but no adverse effect was detected at harvest. It can be concluded that the herbicidal effect of OPW may be considered as an alternative to chemical weed control in some important summer crops (maize and sunflower) and for most of the weeds in winter wheat.  相似文献   
89.
The effect of take-all root lesions on nitrate uptake of wheat was investigated in two experiments under controlled conditions. Plants were supplied with a nutrient solution labelled with 15N during stem elongation and flowering to assess the distribution of the isotopic tracer in the different plant organs, and particularly in root segments located on both sides of take-all lesions. The 15N atom percentage excess measured in root segments located below lesions longer than 1 cm was reduced on average by half compared with that in healthy roots and root segments above lesions, reflecting a reduction in nitrogen uptake by these root segments. This reduction probably resulted from the invasion and breakdown of phloem vessels by the fungus hyphae, interrupting energy supply and thus the uptake process. Severely infected plants showed an increase in the uptake rate per unit of efficient root, which appeared to be a compensatory response to reduction of efficient root biomass in order to satisfy shoot nitrogen demand. However, this compensatory response was insufficient to ensure nitrogen accumulation equivalent to that of healthy plants, as reductions in nitrogen accumulated in roots and aerial parts at flowering were up to 56 and 49%, respectively, for plants with more than 50% of the root system below lesions longer than 1 cm.  相似文献   
90.
Infection processes of Pyrenophora semeniperda on seedling and adult wheat leaves and wheat ears were investigated. Almost 100% germination of conidia occurred on seedling leaves, compared with 20–30% on adult leaves. Appressoria formed over the anticlinal epidermal cell walls and haloes always accompanied infection. Sometimes papillae formed within the leaves as a resistance mechanism. Infection hyphae ramified through the intercellular spaces of the mesophyll resulting in cellular disruption. The infection processes on floral tissues were similar to those observed on leaves; however, no infection occurred on anther, stigmatic or stylar tissues. Infection of ovarian tissue occurred both with and without appressoria formation. Hyphae grew mainly in the epidermal layers and appeared unable to breach the integumental layer as no growth was observed in endosperm or embryo tissues. The optimum dew period temperature for conidial germination was 23·6°C, compared with 19·9°C for lesion development, 20·4°C for the production of infection structures on seedling leaves and 23·7°C for floret infection. Leaf disease development occurred in a logistic manner in response to dew period, with maximum infection observed after 21 h compared with > 48 h in seeds. An initial dark phase during the dew period was necessary for infection and temperature after the dew period had an effect, with significantly more numerous and larger lesions being formed at 15°C compared with 30°C. Seedling leaves were found to be more susceptible than older leaves, under both field and controlled environment conditions. Infection of wheat seeds following inoculation of ears, or after harvest burial of inoculated disease-free seeds, was demonstrated. In the latter, 3-week-old seedlings were slightly stunted, whereas older plants were unaffected. The apparent unimportance of this plant pathogen as a cause of leaf disease in relation to its poor adaptation to dew periods and dew period temperature is discussed, along with the importance of its seed borne characteristics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号