首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   514篇
  免费   30篇
  国内免费   21篇
林业   26篇
农学   33篇
基础科学   8篇
  243篇
综合类   160篇
农作物   7篇
水产渔业   16篇
畜牧兽医   58篇
园艺   6篇
植物保护   8篇
  2024年   3篇
  2023年   9篇
  2022年   11篇
  2021年   19篇
  2020年   18篇
  2019年   24篇
  2018年   19篇
  2017年   26篇
  2016年   37篇
  2015年   22篇
  2014年   21篇
  2013年   37篇
  2012年   33篇
  2011年   25篇
  2010年   26篇
  2009年   26篇
  2008年   29篇
  2007年   32篇
  2006年   21篇
  2005年   18篇
  2004年   14篇
  2003年   9篇
  2002年   6篇
  2001年   5篇
  2000年   13篇
  1999年   6篇
  1998年   6篇
  1997年   3篇
  1996年   3篇
  1995年   5篇
  1994年   4篇
  1993年   15篇
  1992年   5篇
  1991年   3篇
  1990年   7篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
排序方式: 共有565条查询结果,搜索用时 46 毫秒
551.
Chemical immobilization is one of the most effective technologies for remediating sites with heavy metals,but the selection of proper immobilization material and determination of its dose ratio is a challenge that limits the remediation efficiency.In this study,we conducted a meta-analysis of 489 independent observations on the immobilization of heavy metals,in which the immobilization materials were divided into biochar,phosphate,lime,metal oxides,and clay minerals.The statistical analysis of t...  相似文献   
552.
Soil contamination by heavy metal(loid)s is a considerable environmental concern, and immobilization is a promising way to reduce toxicity. In recent years, modified/engineered biochars have gained enormous attention for their use in soil remediation, and various studies have reported notable results from their application and their ability to immobilize heavy metal(loid)s. In this review, a summary of publications on the utilization of modified biochars is presented to address the heavy metal(l...  相似文献   
553.

Background

Labile carbon (Clabile) limits soil microbial growth and is critical for soil functions like nitrogen (N) immobilization. Most experiments evaluating Clabile additions use laboratory incubations. We need to field-apply Clabile to fully understand its fate and effects on soils, especially at depth, but high cost and logistical difficulties hinder this approach.

Aims

Here, we evaluated the impact of adding an in situ pulse of an inexpensive and 13C-depleted source of Clabile—crude glycerol carbon (Cglyc), a by-product from biodiesel production—to agricultural soils under typical crop rotations in Iowa, USA.

Methods

We broadcast-applied Cglyc at three rates (0, 216, and 866 kg C ha−1) in autumn after soybean harvest, tracked its fate, and measured its impact on soil C and N dynamics to four depths (0–5, 5–15, 15–30, and 30–45 cm). Nineteen days later, we measured Cglyc in microbial biomass carbon (MBC), salt-extractable organic C, and potentially mineralizable C pools. We paired these measurements with nitrate N (NO3–N) and potential net N mineralization to examine short-term effects on N cycling.

Results

Cglyc was found to at least 45-cm depth with the majority in MBC (18%–23% of total Cglyc added). The δ13C values of the other measured C pools were too variable to accurately track the Clabile fate. NO3–N was decreased by 13%–57% with the 216 and 866 kg C ha−1 rates, respectively, and was strongly related to greater microbial uptake of Cglyc (i.e., immobilization via microbial biomass). Crude glycerol application had minor effects on soil pH—the greatest rate decreased pH 0.18 units compared to the control.

Conclusions

Overall, glycerol is an inexpensive and effective way to measure in situ, Clabile dynamics with soil depth—analogous to how mobile, dissolved organic C might behave in soils—and can be applied to rapidly immobilize NO3–N.  相似文献   
554.
 Pot and field experiments were conducted to determine microbial immobilization of N fertilizer during growth periods of winter wheat and winter barley. In a pot experiment with winter wheat, Ca(15NO3)2 was applied at tillering [Zadok's growth stage (GS) 25)], stem elongation (GS 31) and ear emergence (GS 49). Rates of 100 mg N pot–1, 200 mg N pot–1 or 300 mg N pot–1 were applied at each N application date. At crop maturity, 15N-labelled fertilizer N immobilization was highest at the highest N rate (3×300 mg N pot–1). For each N-rate treatment about 50% of the total immobilized fertilizer N was immobilized from the first N dressing, and 30% and 20% of the total 15N immobilized was derived from the second and third applications, respectively. In field trials with winter wheat (three sites) and winter barley (one site) N was applied at the same growth stages as for the pot trial. N was also applied to fallow plots, but only at GS 25. N which was not recovered (neither in crops nor in soil mineral N pools) was considered to represent net immobilized N. A clear effect of N rate (51–255 kg N ha–1) on net N immobilization was not found. The highest net N immobilization was found for the period between GS 25 (March) and GS 31 (late April) which amounted to 54–97% of the total net N immobilized at harvest (July/August). At GS 31, non-recovered N was found to be of similar magnitude for cropped and fallow plots, indicating that C from roots did not affect net N immobilization. Microbial biomass N (Nmic) was determined for cropped plots at GS 31. Although Nmic tended to be higher in fertilized than in unfertilized plots, fertilizer-induced increases in Nmic and net N immobilization were poorly correlated. It can be concluded that microbial immobilization of fertilizer N is particularly high after the first N application when crop growth and N uptake are low. Received: 6 July 1999  相似文献   
555.
 A greenhouse experiment was conducted to compare effects of different C and N sources applied to a flooded soil on soil microbial biomass (SMB) C and N, extractable soil organic N (NORG), and NH4 +-N in relation to plant N accumulation of rice (Oryza sativa L.). In addition to a control without inputs (CON), four treatments were imposed receiving: prilled urea (PU), rice straw (RS), RS and PU (RS+PU), or Sesbania rostrata as green manure (SES). Treatments were arranged according to a completely randomized design with four replicates and further consisted of pots with and without transplanted rice. While plant effects on the SMB were relatively small, the application of organic N sources resulted in a rapid increase in SMB until 10 days after transplanting (DAT) followed by a gradual decline until 73 DAT. Plant N accumulation data in these treatments clearly indicated that the SMB underwent a transition from a sink to a source of plant-available soil N during the period of crop growth. Seasonal variation of the SMB was small in treatments without amendment of organic material (CON, PU) presumably due to a lack of available C as energy source. Extractable NORG was significantly affected by soil planting status and organic N source amendment, but represented only a small N pool with little temporal variation despite an assumed rapid turnover. Among the three treatments receiving the same amount of N from different sources, the recovery efficiency of applied N was 58% for PU and 28% for both RS+PU and SES treatments at 73 DAT. The N uptake of rice, however, was not driven by N availability alone, as most evident in the RS+PU treatment. We assume that root physiological functions were impeded after application of organic N sources. Received: 1 June 1999  相似文献   
556.
本研究通过海藻酸钠包埋磁性生物炭与降解菌DNS32形成磁性炭基菌球(DMBC-P),并将其用于阿特拉津(ATZ)污染土壤的修复,探讨其去除ATZ的效能及促进大豆幼苗生长的能力。研究表明,当海藻酸钠与氯化钙的浓度为2%时,DMBC-P对ATZ的去除能力最强。在DMBC-P投加量为2%、温度为30 ℃、pH=7.3时,其对水体中ATZ的去除率可达到99.99%;并且在pH为3.3~7.3、温度为10~50 ℃以及ATZ浓度为30~140 mg·L-1的环境中,DMBC-P对ATZ的去除性能仍然十分优异且其可以被有效回收。盆栽试验结果表明,施用DMBC-P进行修复后,该处理下大豆幼苗的生理指标显著高于空白对照处理,叶绿素a、叶绿素b、类胡萝卜素和总叶绿素含量分别提高79.14%、45.48%、67.87%和110.78%。研究表明,DMBC-P施用于污染土壤中能够实现ATZ的高效去除和材料有效回收,是一种极具潜力的污染土壤修复材料。  相似文献   
557.
固定化光合细菌净化养鱼水质试验↑(*)   总被引:34,自引:1,他引:33  
净化模拟养殖水质试验表明,固定化光合细菌可显著提高NH+4 - N 和COD 的去除率,并能增加溶解氧。经1 个月的鱼种饲养试验,固定化光合细菌( Ⅲ组) 和游离光合细菌( Ⅱ组) 鱼体重显著大于对照( Ⅰ组) ,成活率也高于Ⅰ组。Ⅲ组效果最佳,不仅鱼体质好,活泼,个体较大且整齐,而且体色鲜艳。从水质分析结果看,Ⅲ组明显优于其它各组。  相似文献   
558.
Ichthyophthirius multifiliis (Ich), a ciliated protozoan parasite of fish, expresses surface antigens (i-antigens), which react with host antibodies that render them immobile. The nucleotide sequence of an i-antigen gene of I. multifiliis strain ARS-6 was deduced. The predicted protein of 47 493 Da is comprised of 460 amino acids (aa's) arranged into five imperfect repeats with periodic cysteine residues with the structure: CX(19)20CX2CX16−27CX2CX20(21)CX3. The N-terminal aa's typify a signal peptide motif while a stretch of C-terminal aa's resemble a glycosyl–phosphatidyl–inositol (GPI)-anchor addition site. The degree of deduced i-antigen aa sequence identity of strain ARS-6 (GenBank accession # ACH87654 and # ACH95659) with other I. multifiliis i-antigen sequences present in GenBank ranges from 99% to 36% identity with 52 kDa i-antigens of I. multifiliis strain G5 (accession #s AAK94941 and AAK01661 respectively). Immunoblot analysis of i-antigens following exposure of I. multifiliis theronts to catfish anti- I. multifiliis immune serum did not show any appreciable alteration in i-antigen expression. The mechanism that regulates i-antigen expression in I. multifiliis remains a puzzling question.  相似文献   
559.
丝瓜络固定化微生物对土壤多环芳烃吸附-降解作用   总被引:1,自引:1,他引:0  
以假单胞菌(Pseudomonas sp.SDR4,简称S4)、毛霉真菌(Mucormucedo sp.SDR1,简称S1)为研究对象,采用微生物固定化技术,研究了其对土壤多环芳烃的吸附和降解动力学,并探讨了固定化微生物对土壤多环芳烃的吸附机理及吸附降解关系。结果表明:试验60 d,改性丝瓜络(CK)、死体固定化S1(S1-D)、死体固定化S4(S4-D)、死体固定化S1与S4混合菌(S1+S4-D)对菲(Phe)的动态平衡吸附量分别为5.28、6.82、5.73、7.46μg,对芘(Pyr)的动态平衡吸附量分别为4.17、4.72、4.53、5.00μg,死体固定化微生物对Phe与Pyr的吸附过程均服从于准二级动力学;活体真菌S1、细菌S4、混合菌S1+S4对Phe的动态吸附量分别为2.32、2.01、2.76μg,对Pyr的动态吸附量分别为2.79、2.41、3.14μg,活体固定化微生物对土壤中Phe与Pyr的准一级动力学与准二级动力学拟合结果R2相差较小;S1、S4、S1+S4对Phe的降解率分别为54.34%、61.45%、64.23%,对Pyr的降解率分别为38.42%、35.02%、42.43%;经S1、S4、S1+S4处理后,Phe的降解半衰期分别为38.88、29.41、25.63 d,Pyr的降解半衰期分别为64.76、69.02、59.28 d。研究表明,化学作用是控制丝瓜络固定化微生物对多环芳烃吸附速率的主要因素;提高微生物的降解能力能增加对土壤中PAHs迁移的影响;混合菌中真菌与细菌存在协同作用,能提高Phe与Pyr的降解效率。  相似文献   
560.
ABSTRACT:   Hepatopancreases were washed four times with 2% acetic acid solution. In both the washed hepatopancreases and the supernatant of the washing solution, the residual cadmium (Cd) concentration was in accordance with the required standard for organic fertilizers. Hepatopancreases do not naturally contain high levels of nitrogen, but they do contain several amino acids which are useful for cultivation, and these were retained during the washing process. Although the condensed precipitate of the washing solution contained a considerable amount of Cd, Cd elution levels at the time of final disposal met judgment standard for special management industrial waste as a result of kneading and immobilizing with chelating adsorbent for treatment of contaminated soil. The volume of the precipitate of the washing solution was one-fifth of the original hepatopancreas, and the solid waste was suitable for burial at a final disposal site without further treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号