首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   512篇
  免费   29篇
  国内免费   21篇
林业   26篇
农学   31篇
基础科学   8篇
  243篇
综合类   160篇
农作物   7篇
水产渔业   16篇
畜牧兽医   57篇
园艺   6篇
植物保护   8篇
  2024年   3篇
  2023年   9篇
  2022年   10篇
  2021年   19篇
  2020年   18篇
  2019年   22篇
  2018年   19篇
  2017年   26篇
  2016年   37篇
  2015年   22篇
  2014年   21篇
  2013年   37篇
  2012年   33篇
  2011年   25篇
  2010年   26篇
  2009年   26篇
  2008年   29篇
  2007年   32篇
  2006年   21篇
  2005年   18篇
  2004年   14篇
  2003年   9篇
  2002年   6篇
  2001年   5篇
  2000年   13篇
  1999年   6篇
  1998年   6篇
  1997年   3篇
  1996年   3篇
  1995年   5篇
  1994年   4篇
  1993年   15篇
  1992年   5篇
  1991年   3篇
  1990年   7篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
排序方式: 共有562条查询结果,搜索用时 125 毫秒
51.
Leaf litter decomposition and nutrient release patterns from five common multipurpose tree species—viz., Artocarpus heterophyllus, Mangifera indica, Areca catechu, Citrus sp., and Tamarindus indica, found in homegardens of Mizoram—were evaluated using a litter bag technique. The result of the study indicates a varying pattern of decomposition and nutrient release (N&P) among the species. Citrus sp. and T. indica were found to be the most labile species with comparatively much higher decay constant and faster nutrient release. Initial nitrogen concentration, lignin content, and lignin/N ratio of foliage litter showed significantly higher (p < .01) correlation with the decay coefficient and were found to be the important determinants in the decay process. The initial slow release and immobilization of N in A. heterophyllus and M. indica leaf litter reflect their potential as a source of nitrogen storage and effective mulching material. While litter from T. indica and Citrus sp. can provide the short-term nutrient need, foliage for the other three species may supply the long-term nutrient requirement for the understory crops in such agroforestry systems.  相似文献   
52.
53.
不同钝化剂对铅锌矿区周边农田镉铅污染钝化修复研究   总被引:13,自引:7,他引:6  
采用大田试验和盆栽试验,研究了海泡石(S)、石灰(L)、腐植酸(H)、生物炭(B)和钙镁磷肥(P)对云南某铅锌矿区周边玉米农田的修复效果,并采用BCR形态分级试验研究土壤钝化前后重金属形态的变化。结果表明:石灰和海泡石可显著提高土壤pH。钝化处理可显著降低DTPA提取态Cd、Pb含量,盆栽试验中,生物炭45 t·hm~(-2)处理对Cd钝化效率可达45.3%,石灰2.25 t·hm~(-2)处理对Pb钝化效率可达60.6%;大田试验中,钙镁磷肥3 t·hm~(-2)处理对Cd最高钝化效率可达48.3%,石灰4.5 t·hm~(-2)处理对Pb钝化效率可达25.3%。石灰、海泡石和生物炭对重金属形态变化影响显著,可促进重金属由高活性形态向低活性形态转换。钝化处理可显著降低玉米籽粒中Cd、Pb含量,生物炭22.5 t·hm~(-2)处理下,Cd最大降幅85%,作物达到食品安全国家标准(GB 2762—2012,Cd≤0.1 mg·kg-1),石灰4.5 t·hm~(-2)处理下,Pb最大降幅59.6%,但未达到食品安全国家标准(GB 2762—2012,Pb≤0.2 mg·kg-1)。部分钝化剂可以起到增产的作用,腐植酸22.5 t·hm~(-2)处理下可增产29.1%。综合分析不同钝化剂及其施用量的效果可知,海泡石和石灰是对该矿区周边Cd、Pb污染农田修复效果最佳的钝化剂,最佳施用量分别为海泡石45 t·hm~(-2)和石灰2.25 t·hm~(-2)。  相似文献   
54.
【目的】为基于大孔树脂吸附结合环氧交联剂交联法固定脂肪酶等工业用酶奠定基础。【方法】使用大孔树脂吸附,而后环氧交联剂交联的方法进行脂肪酶的固定化,研究各因素对吸附–交联固定化的影响,并采用响应面法对固定化条件进行优化,制备固定化酶并考察其稳定性。【结果】筛选出大孔树脂HPD750为载体,聚乙二醇二缩水甘油醚为交联剂。最佳固定化条件为:吸附温度45℃,给酶量60 mg·g–1,交联温度30℃,交联时间12.5 h,pH6.36,交联剂体积分数为0.7%。由上述条件制备所得的固定化酶活力为565.31 U·g–1,酶活力回收率为32.16%。与游离酶相比,固定化酶的热稳定性和酸碱稳定性均有明显提升;连续操作10次,固定化酶活力仍保留34.86%,操作稳定性较好;4℃条件下储存30 d,固定化酶活力仍保留64.81%。【结论】大孔树脂HPD750为载体,聚乙二醇二缩水甘油醚为交联剂制备的固定化脂肪酶热稳定性、酸碱稳定性均得到显著提升,且具有良好的操作及储存稳定性。  相似文献   
55.
世界上超过40%的耕作土壤为酸性,养分效率低是酸性土壤限制作物产量的主要因素。根系是植物吸收养分和水分的主要器官,也是植物与土壤微生物互作的主要界面。挖掘根系对土壤养分吸收和利用的遗传潜力、改善根际土壤微生物组成及活性是提高作物产量、减少环境污染和提升土壤健康的重要策略。此外,豆科作物与根瘤菌共生所固定的氮素是农业生态系统中不可替代的清洁氮源,也是影响根际土壤微生物组的重要因素。本文以大豆为代表,系统总结了酸性土壤中,豆科作物养分高效根系遗传改良、根系与根际微生物互作提高养分效率和土壤健康的研究进展。此外,本文还概述了应用养分高效大豆品种,通过接种高效根瘤菌剂并与玉米、茶树间套作的生态效益,为豆科作物养分高效遗传改良及推动其在可持续农业中的应用提供理论依据和应用案例。  相似文献   
56.
This study was conducted to evaluate the efficiency of diammonium phosphate (DAP), agricultural limestone (lime), and green‐waste compost mixed with 30% treated sewage sludge (GCS) applied alone or in combination as chemical immobilization treatment using tomato as a test crop. Mine waste was collected from an abandoned copper‐mine tailing site at Mynydd Parys, Anglesey (UK). Lime was applied at the rate of CaCO3 equivalent (CCE, pH = 7), DAP at the rate of 23 g P per kg substrate, and 10% by weight, GCS as sole application. Half rate of each amendment was also tested as a combined treatment and an untreated substrate (control). Plant‐available metals (Cd, Cu, Fe, Pb, and Zn) were measured in substrate with conventional diethylenetriaminepentaacetic acid (DTPA) and sequential Ca(NO3)2 extraction. Plant–dry biomass yield was significantly (p < 0.001) increased by the combined application of all the three amendments while sole application of DAP reduced yield by 4‐fold compared to unamended soil probably due to P toxicity. Addition of lime reduced the DTPA‐extractable Cu, Fe, and Zn by 75%, 81%, and 85%, respectively, while Pb availability was reduced by 88% in combined DAP + lime + GCS treatment compared to control. The extraction capacity of DTPA was higher than that of Ca(NO3)2 by 3‐fold for Cu and Fe, 8‐fold for Pb, and 2‐fold for Zn. The leaf‐tissue concentrations of Cu and Fe were reduced by 77% and 83% in the lime + GCS amendment, respectively, while both Pb and Zn were reduced by 89% and 33%, respectively, in substrate treated with the combined application of all three amendments. These results suggest that alkaline amendments (both lime and GCS) were effective in reducing the phytoavailability of Cu, Fe, and Zn while DAP mixed with either GCS or lime was effective in reducing Pb availability.  相似文献   
57.
Background, Aim and Scope  The toxicity of contaminated sediments should be evaluated considering the direct exposure of laboratory organisms to whole sediments and the indirect exposure to elutriates or extracts (Tay et al. 1992, Byrne and Halloran 1999, Nendza 2002). The alga Dunaliella tertiolecta is indicated for the use in toxicity bioassays because it is highly sensitive to several xenobiotics. Harpacticoid copepods have been already used for toxicity testing and Tigriopus fulvus is a promising Mediterranean target-species in ecotoxicology (Todaro et al. 2001, Faraponova et al. 2003, Pane et al. 2005a). In this study, the toxicity of sediments collected in harbour sites of the Northeastern Adriatic Sea was evaluated by growth inhibition test with free living and alginate-immobilized Dunaliella tertiolecta and acute toxicity test with nauplii and adult Tigriopus fulvus with the aim of pointing out the importance to utilize model organisms from different trophic levels in sediment ecotoxicology. Methodology  Elutriates and whole sediments were tested on free living and immobilized (Pane et al. 1998) algal cells, and on laboratory reared copepods. Free-living D. tertiolecta were exposed to diluted elutriates in a static, multi-well plate system. Naalginate immobilized D. tertiolecta were placed in polystyrene inserts fitted with polyester mesh bottoms and exposed to a thin layer (2 mm) of whole sediments in multi-well plates (EPS 1992, Pane and Bertino 1999). Toxicity tests with copepods were carried out on Tigriopus fulvus nauplii (elutriates) and adults (whole sediments and elutriates). Same-aged nauplii useful for toxicity tests were obtained by egg sac detaching and consequent hatching stimulation (Pane et al. 2006). Newborn nauplii (I–II stage) were exposed to elutriates in multi-well plates provided with polystyrene inserts. Adult T. fulvus maintained in polystyrene inserts fitted with polyester mesh bottoms were placed in contact with a thin layer (2 mm) of whole sediment placed on multi-well plate bottoms. All end-points were evaluated after 96 h. Results  In general, the effects increased with the increasing of elutriate concentration up to 50%; the stimulation or inhibition of algal growth was statistically significant in comparison to the control. The inhibiting elutriates induced EC50 variations of algal growth ranging from 66.9% to 74.3%. The mortality of T. fulvus nauplii was always < 25% after treatment with 100% elutriates and < 10% after treatment with 50% dilution; no effect was shown up with 25% dilution; therefore LC50 was not calculable. The effect of elutriates was negligible on adult copepods and LC50 values were never calculable; percent mortality always resulted in < 10% after treatment with whole sediments. Discussion  Both experimental systems gave substantially similar results after exposition to whole sediments and elutriates. During the experiment with algal cells, the immobilization in Na-alginate and the employment of inserts which allowed the contact of organisms with sediments and their easy counting were particularly useful. Likewise, the employment of inserts of adequate mesh size in the tests with copepods allowed the contact of organisms with the sediment and made organism handling and counting easy, as well as the evaluation of mortality. The methodology here described and the utilization of the proposed test-species could have an importance also considering that the current trend in ecotoxicological research is towards finding the most appropriate organism for specific areas of concern by using indigenous species (Mariani et al. 2006) and towards the major significance of chronic and reproductive end-points. Conclusions  Based on the above results, it can be stated that the bioassay with Dunaliella tertiolecta could be a good estimation tool for the ecotoxicological assessment of marine sediments. The immobilization of algae in Na-alginate was seen to be useful to evaluate the toxicity of whole sediments; the employment of polystyrene inserts allowed an improvement of the procedures. T. fulvus nauplii and adults, as other harpacticoids such as Tigriopus japonicus (Yoon et al. 2006), satisfy the basic criteria for the employment of a standard species in marine bioassays. To date only pelagic Acartia tonsa are utilized in the standardized procedure to evaluate the risk assessment of chemicals or wastewaters (ISO 1999). As, on the contrary, the exposure of copepods to solid-phase contaminants it is not yet standardized, the employment of polystyrene inserts improved the procedures for T. fulvus too. So, the rapidity and the possibility to solve practical problems could be the main attractive features of this technique (Pane et al. 2005a) when applied to whole sediments. Recommendations and Perspectives  The methodology here developed being also applicable to long term and reproduction tests should be recommended because it provides relevant information in comparison with other frequently applied, standardized biotests with crustaceans (ISO 1999). The procedure has been shown to be easily applicable to selected marine organisms. ESS-Submission Editor: Prof. Dr. Henner Hollert (henner.hollert@bio5.rwth-aachen.de)  相似文献   
58.
Concerns about sustainability of agroecosystems management options in developed and developing countries warrant improved understanding of N cycling. The Integrated Soil Fertility Management paradigm recognizes the possible interactive benefits of combining organic residues with mineral fertilizer inputs on agroecosystem functioning. However, these beneficial effects may be controlled by residue quality. This study examines the controls of inputs on N cycling across a gradient of (1) input, (2) residue quality, and (3) texture. We hypothesized that combining organic residue and mineral fertilizers would enhance potential N availability relative to either input alone. Residue and fertilizer inputs labeled with 15N (40–60 atom% 15N) were incubated with 200 g soil for 545 d in a microcosm experiment. Input treatments consisted of a no-input control, organic residues (3.65 g C kg−1 soil, equivalent to 4 Mg C ha−1), mineral N fertilizer (100 mg N kg−1 soil, equivalent to 120 kg N ha−1), and a combination of both with either the residue or fertilizer 15N-labeled. Zea mays stover inputs were added to four differently textured soils (sand, sandy loam, clay loam, and clay). Additionally, inputs of three residue quality classes (class I: Tithonia diversifolia, class II: Calliandra calothyrsus, class III: Z. mays stover) were applied to the clay soil. Available N and N2O emissions were measured as indicators for potential plant N uptake and N losses. Combining residue and fertilizer inputs resulted in a significant (P < 0.05) negative interactive effect on total extractable mineral N in all soils. This interactive effect decreased the mineral N pool, due to an immobilization of fertilizer-derived N and was observed up to 181 d, but generally became non-significant after 545 d. The initial reduction in mineral N might lead to less N2O losses. However, a texture effect on N2O fluxes was observed, with a significant interactive effect of combining residue and fertilizer inputs decreasing N2O losses in the coarse textured soils, but increasing N2O losses in the fine textured soils. The interactive effect on mineral N of combining fertilizer with residue changed from negative to positive with increasing residue quality. Our results indicate that combining fertilizer with medium quality residue has the potential to change N transformations through a negative interactive effect on mineral N. We conclude that capitalizing on interactions between fertilizer and organic residues allows for the development of sustainable nutrient management practices.  相似文献   
59.
An incubation experiment was carried out to investigate whether salinity at high pH has negative effects on microbial substrate use, i.e. the mineralization of the amendment to CO2 and inorganic N and the incorporation of amendment C into microbial biomass C. In order to exploit natural differences in the 13C/12C ratio, substrate from two C4 plants, i.e. highly decomposed and N-rich sugarcane filter cake and less decomposed N-poor maize leaf straw, were added to two alkaline Pakistani soils differing in salinity, which had previously been cultivated with C3 plants. In soil 1, the additional CO2 evolution was equivalent to 65% of the added amount in the maize straw treatment and to 35% in the filter cake treatment. In the more saline soil 2, the respective figures were 56% and 32%. The maize straw amendment led to an identical immobilization of approximately 48 μg N g−1 soil over the 56-day incubation in both soils compared with the control soils. In the filter cake treatment, the amount of inorganic N immobilized was 8.5 μg N g−1 higher in soil 1 than in soil 2 compared with the control soils. In the control treatment, the content of microbial biomass C3-C in soil 1 was twice that in soil 2 throughout the incubation. This fraction declined by about 30% during the incubation in both soils. The two amendments replaced initially similar absolute amounts of the autochthonous microbial biomass C, i.e. 50% of the original microbial biomass C in soil 1 and almost 90% in soil 2. The highest contents of microbial biomass C4-C were equivalent to 7% (filter cake) and 11% (maize straw) of the added C. In soil 2, the corresponding values were 14% lower. Increasing salinity had no direct negative effects on microbial substrate use in the present two soils. Consequently, the differences in soil microbial biomass contents are most likely caused indirectly by salinity-induced reduction in plant growth rather than directly by negative effects of salinity on soil microorganisms.  相似文献   
60.
Phosphorus (P) immobilization in soil involves geochemical (e.g., sorption, precipitation, and diffusion) and microbiological (microbial uptake) processes. Using a Brazilian Ultisol, relative contributions of both processes to the total immobilization of applied P over 14 days were investigated. The P immobilized by microbes as interpreted by microbial suppression (achieved by mercury sterilization) was 17, 50, 54, and 56% (of the total immobilized P) on days 3, 7, 10, and 14 after fertilization, respectively. In the short-term (1 to 3 days), microbes played less of a role than did the physical effect of shaking the soil, but became the major factor by days 7 to 14. Geochemical process that might be considered short-term ageing caused only 13–16% of the total immobilization in the same time period above. Calculations supported the interpretation that measurable diffusion occurred across water films on the soil particles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号