首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   363篇
  免费   12篇
  国内免费   46篇
林业   12篇
农学   67篇
基础科学   19篇
  108篇
综合类   122篇
农作物   48篇
畜牧兽医   8篇
园艺   24篇
植物保护   13篇
  2024年   2篇
  2023年   10篇
  2022年   11篇
  2021年   15篇
  2020年   15篇
  2019年   27篇
  2018年   10篇
  2017年   29篇
  2016年   28篇
  2015年   29篇
  2014年   25篇
  2013年   48篇
  2012年   45篇
  2011年   24篇
  2010年   23篇
  2009年   15篇
  2008年   15篇
  2007年   21篇
  2006年   9篇
  2005年   5篇
  2004年   5篇
  2003年   1篇
  2002年   5篇
  2001年   1篇
  1999年   2篇
  1991年   1篇
排序方式: 共有421条查询结果,搜索用时 31 毫秒
61.
氮肥运筹对水稻农学效应和氮素利用的影响   总被引:15,自引:4,他引:11  
通过田间试验,以不同氮肥量级为参照,结合关键生育期叶片叶绿素含量(SPAD值)指导氮肥施用,以探明潜江地区水稻关键生育期的氮肥适宜用量。结果表明,在施N 90~180kg/hm2间水稻产量差异不显著,当超过N 180 kg/hm2,产量降低。根据水稻产量(y)和施氮量(x)拟合得出一元二次关系式:y = -0.0728x2 + 22.335x + 6811.5,R2 = 0.9442。结合当年水稻价格肥料投入费用等计算出水稻的经济效益(Y)和施氮量(X)之间的函数式:y = -0.134x2 + 37.097x + 12533-M,R2 = 0.9331;由此得出经济效益最大时水稻的施氮量是N 138 kg/hm2。该施氮量下水稻的氮肥表观利用率,农学利用率和氮肥偏生产力可保持在40.9%,11.5 kg/ kg和63.2 kg/ kg,与完全依据SPAD值指导关键生育期的氮肥施用量相近似(N 140 kg/hm2),保证了水稻最大的经济效益,同时也保持了较高的氮肥利用率,降低氮素表观损失。  相似文献   
62.
本研究旨在探讨单粒精播花生生理性状和产量性状对密度和氮肥的响应。选择山东省烟台市招远鲁东丘陵地,作物两年三熟。2018和2019年,以出口大花生品种花育22为试验材料进行大田试验,设置了3个种植密度(12万、20万、28万株/hm2,分别表示为D1、D2和D3)和4个施氮量(0、50、115、180 kg/hm2,分别表示为N0、N50、N115、N180),于不同生育时期调查分析花生SPAD值、植株和产量性状。研究结果表明,种植密度和施氮量均显著影响花生叶绿素含量、干物质量、植株性状和产量性状,且两者互作效应显著。在D2密度条件下,花生荚果产量较D1密度和D3密度分别高24.31%~45.04%和10.57%~15.13%,成熟期叶绿素含量分别高3.70%~27.82%和6.10%~18.94%,成熟期干物质量分别高7.31%~32.34%和10.65%~34.59%,且差异性均达到了显著水平。在D2密度下,施氮量在50~180 kg/hm2范围内,花生荚果产量、叶绿素含量和干物质量均显著高于无氮处理,各施氮处理表现为N115 > N180 > N50 > N0,以施氮量为115 kg/hm2时花生荚果产量最大,较N50和N180处理分别提高了6.83%和3.90%,叶绿素含量、干物质量和植株性状也协同提高。综合考虑生理性状、产量性状等因素,在本试验条件下,单粒精播花生栽培在低密度12万株/hm2下,花生主要产量性状随着施氮量的增加而增加,以种植密度为20万株/hm2,施氮量为115 kg/hm2较为适宜。  相似文献   
63.
Producers use elemental ratios, such as calcium (Ca): magnesium (Mg), in fertility programs to ensure sufficient nutrient uptake. Kale (Brassica oleracea L. var. acephala D.C.) accumulates high levels of carotenoids which can be beneficial for human health. Objectives were to determine the influence of Ca:Mg fertilization on 1) biomass, 2) essential nutrients, and 3) carotenoids in kale leaf tissues. ‘Redbor’ kale was greenhouse-grown in solution culture. Ca:Mg ratio treatments were 9:1, 6:1, 3:1, 1:3, 1:6, and 1:9. Ca:Mg ratio significantly affected biomass, nutrient accumulation, and carotenoids. Plant biomass decreased linearly (P ≤ 0.001) and β-carotene, lutein, neoxanthin, and antheraxanthin all increased, then decreased quadratically (P ≤ 0.001) as the ratio of Ca:Mg changed from 9:1 to 1:9. Ca:Mg ratio also affected leaf tissue Ca, Mg, potassium (K), sulfur (S), boron (B), manganese (Mn), molybdenum (Mo) and zinc (Zn). Results indicate that producers wishing to maximize elemental uptake and carotenoid content of kale need to consider the ratio of Ca:Mg in their fertility programs.  相似文献   
64.
《Journal of plant nutrition》2013,36(7):1133-1144
Abstract

The evolution of both leaf expansion and chlorophyll content was assessed in potted sweet pepper plants subjected to four different levels of nitrogen (mg N/kg of soil): N1 = 25 (basal dressing); N2 = 50 (basal dressing); N3 = 100 (basal dressing and one side dressing); and, N4 = 150 (basal dressing and two side dressings). In each plant, the first leaves (numbered 1–5) were chosen at the main stem and the next four ramifications. The relative chlorophyll content of leaves 1 to 5, from all treatments, was obtained by a portable chlorophyll meter, SPAD-502, twice a week. The SPAD readings were subsequently converted into total chlorophyll (μ g cm? 2). The plant dry weight, the number of fruits per plant, and the N content of leaves were measured at final harvest (70 d after transplantation, DAT). Until the first side dressing (35 DAT), the increase in chlorophyll content was similar in all treatments, decreasing afterward under the N1 and N2 treatments (leaves 1 and 2), while under the N3 and N4 treatments the increase in the chlorophyll content continued after the first side dressing. The application of the second side dressing (53 DAT) under the N4 treatment induced a subsequent increase in chlorophyll content in all leaves compared with those of N3. An early senescence was observed under the N1 and N2 treatments compared with the others. Applied N in side dressing led to an increase in leaf width (leaves 2–5) and longevity, mainly in leaves 2 and 3, and a subsequent increase under fruit number and fruit dry weight under the N3 and N4 treatments.  相似文献   
65.
Abstract

Photosynthesis is affected by many factors on which plant productivity depends; however, little is known about the variation of spring barley photosynthetic characteristics under the influence of different stand densities. A 2-year field study was conducted to determine the photosynthetic rate (A), efficiency of excitation capture by open PSII reaction centres (F'v/F'm) and chlorophyll index (SPAD) response of various spring barley varieties to different stand densities (SDs) under field conditions. Three seed rates were used (200, 400 and 600 plants m?2) and three varieties (Aura DS, Barke and Gustav). The measurements were made three times during the growing season. Varietal effect was significant on all indicators, the influence of the factors' interaction was significant on A, but SD influence was not significant. Varieties differed in tolerance to weather conditions. Maximum A was established for Gustav in wet year, but for Barke in dry year. The highest F'v/F'm was observed for Gustav under dry and warm conditions. The lowest F'v/F'm across varieties was for the lowest SD. The highest SPAD was observed for Gustav, the lowest for Aura DS. SPAD increased with decreasing SD. The correlation between the indicators and grain yield was positive. Meteorological conditions influenced the A data variation by 46.4–82.5%, 60.9–87.8% and 61.9–83.9% for the Aura DS, Barke and Gustav, respectively. Our research showed that under Central Lithuania's weather conditions the most effective photosynthetic process was recorded in the intensive variety Gustav, which is recommended to be grown at a medium crop density of 400 plants m?2.  相似文献   
66.
Abstract

The aim of the present study was to estimate the influence of different rates of soil-applied nitrogen on leaf N and chlorophyll content and photosynthesis in ‘Golden Delicious’ apple trees. Three different treatments were included: the trees were either fertilized with 80 kg N ha?1 (N-80), 250 kg N ha?1 (N-250) or left unfertilized (CON). Fertilization increased leaf nitrogen content, with a more prominent effect in high N application level treatment. In all treatments, a slight seasonal decrease in leaf nitrogen content was observed. N-250 treatment resulted in higher chlorophyll content; a similar effect was found late in the season for N-80 treatment. Measurements of A-C i curves, performed on spur leaves, revealed a higher CO2 saturated photosynthetic rate in N-250 trees compared with low application level fertilized or unfertilized trees. No effect of N fertilization on carboxylation efficiency was found, as revealed by comparisons of the initial slopes of A-C i curves. The lack of positive effect is rather surprising, since the leaf N content was efficiently increased with application of fertilizer. Obviously, the existing pool of leaf nitrogen in non-fertilized trees does not limit Rubisco activity and efficiency.  相似文献   
67.
Abstract

In higher plants, it is well known that the retranslocation of iron from old leaves to young leaves is difficult; as a result, iron deficiency leads to interveinal chlorosis, particularly in the young leaves. However, in the case of barley, young chlorotic leaves can grow under conditions of long-term iron deficiency. Previously, we have reported that the distribution and retranslocation characteristics of iron in barley may be better adapted to iron deficiency than those in rice. Furthermore, barley maintained a relatively high chlorophyll index (SPAD value) even when its iron content was not higher than that of rice. In this study, we aimed to predict the chemical form of iron that contributes to the physiologically available iron in barley leaves. To examine the correlation between plant growth and the SPAD value with the amount of fractionated iron, we cultured plant materials in a culture solution containing various iron concentrations. We compared these correlations among barley, rice and sorghum and among three barley cultivars. To compensate for the amount of mugineic acid phytosiderophores (MAs) in the culture solution, we cultured different plant species in the same container. The results revealed that the amount of soluble iron associated with the high-molecular-weight substances (MW >10,000) correlated with the SPAD value of the young barley leaves and the R2 value (determination coefficient) of barley was higher than the values of rice and sorghum.  相似文献   
68.
In a three-year field experiment in Toulouse (in Southwest France), two indicators of plant nitrogen (N) status were compared on five durum wheat cultivars: the normalized SPAD index and the nitrogen nutrition index (NNI). SPAD value is a non-destructive measurement of chlorophyll content from the last expanded leaf. The normalized SPAD index is expressed relative to SPAD reading on a fully fertilized crop. The NNI is calculated from the crop biomass and total plant N content using a universal N-dilution curve for wheat. The normalized SPAD index and NNI were closely related irrespective of year, cultivar, and growth stage. When N was a limiting factor, the SPAD index measured at anthesis predicted grain yield and protein content accurately. Unlike NNI, SPAD index cannot be used to predict these variables when wheat is over-fertilized.  相似文献   
69.
Abstract

A water culture pot experiment was conducted to analyze the effects of N application during the ripening period (RP) on photosynthesis, dry matter production, and its impact on grain ripening and yield in two semidwarf indica type varieties viz. Gui Zhao 2 (GZ) and BR3 (BR) compared with a japonica type variety Koganemasari (KO) under four N rates viz. 0 (N0), 10 (N10), 20 (N20), and 40 (N40) mg L?1. Results showed that N application enabled to maintain a higher leaf area and delay leaf senescence in both indica and japonica type varieties but the decrease in the rate, of leaf area was higher in the former than in the latter and the rate was reduced with increasing N rates. Flag leaf photosynthesis and SPAD values of N treated plants were higher throughout the RP, showing the presence of a significant correlation either for each variety or all the varieties together. Higher photosynthetic rate was supported by higher leaf chlorophyll (SPAD value basis) content, stomatai conductance, and N concentration in leaf blades. Top dry matter content increased with increasing N rates mainly due to mean leaf area rather than NAR except for BR during RP but it was higher in KO than in GZ and BR. Reduction of shoot weight due to translocation of dry matter to panicles during RP was suppressed by N rates both in GZ and BR while shoot weight increased in the N-treated plants in KO. The dependency of KO on current photosynthates for panicle weight was found to be almost hundred percent while the contribution of stored carbohydrates in shoot before heading to panicle weight in GZ and BR was in the range of 4-27 and 33-54%, respectively and the rest was contributed by current photosynthates. The percentage increased with increasing N rates. Percentage of ripened grains (PRG) increased with increasing N rates in GZ and BR due to the increase in dry matter production and in the photosynthetic rates of apex leaves, despite the larger spikelet number and larger hull size. However, KO showed almost no variation although it had the highest PRG among the varieties. Brown rice yield followed the same pattern as that of PRG in GZ and BR and the highest yield was produced by BR followed by GZ and KO. These results suggest that N application during RP was more effective in increasing yield in the semidwarf indica type varieties than in the japonica type variety.  相似文献   
70.
氮磷调控及紫云英配施提高早稻冠层特性和产量   总被引:1,自引:0,他引:1  
为揭示不同氮、磷施用量及配合翻压适量紫云英入田对早稻冠层特性和产量的影响,在7个施氮、3个施磷及2个不施氮/磷水平下,开展早稻全生育期叶面积指数LAI、冠层光合有效辐射PAR传输特性、叶片叶绿素SPAD值、生育后期剑叶净光合速率Pn及产量的试验观测。结果表明,氮磷调控可显著影响早稻LAI、叶片叶绿素含量和叶片光合速率,进而通过调节LAI影响冠层PAR传输特性,最终表现为产量上的差异。缺氮对早稻的影响显著高于缺磷,但在施肥充足时,磷肥对产量的影响比氮肥更加显著。早稻冠层特性和产量随氮、磷施用量的增加表现出边际递减效应,当施用量超过某一值时出现拐点,最终表现为产量的下降。在赣抚平原灌区,187.5~225 kg/hm2施氮量和60~120 kg/hm2施磷量以及翻压15 000 kg/hm2紫云英鲜草入田可有效提高早稻LAI和冠层PAR截获率In以及叶片叶绿素含量,维持剑叶生长期内较高的净光合速率Pn,获得高产。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号