首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   446篇
  免费   10篇
  国内免费   35篇
林业   50篇
农学   22篇
基础科学   46篇
  158篇
综合类   23篇
农作物   13篇
水产渔业   3篇
畜牧兽医   129篇
园艺   41篇
植物保护   6篇
  2023年   19篇
  2022年   17篇
  2021年   9篇
  2020年   16篇
  2019年   12篇
  2018年   15篇
  2017年   14篇
  2016年   26篇
  2015年   18篇
  2014年   34篇
  2013年   47篇
  2012年   25篇
  2011年   25篇
  2010年   32篇
  2009年   16篇
  2008年   25篇
  2007年   27篇
  2006年   26篇
  2005年   15篇
  2004年   16篇
  2003年   3篇
  2002年   12篇
  2001年   12篇
  2000年   3篇
  1999年   5篇
  1998年   3篇
  1997年   6篇
  1996年   2篇
  1994年   2篇
  1993年   3篇
  1991年   1篇
  1990年   1篇
  1983年   1篇
  1982年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有491条查询结果,搜索用时 15 毫秒
91.
Different combinations of organic mulch were applied in smallholder coffee farming systems to assess their effects on soil nutrient contents and coffee yield at three sites in different agro-ecological zones in Rwanda. Mulching systems consisted of Cymbopogon spp. (T1), Panicum spp. (T2), Cymbopogon spp. and Panicum spp. (T3), Eucalyptus spp. and Cymbopogon spp. (T4), mixed residues (T5) and un-mulched coffee used as control (T6). Mulch had significant and specific effects at each site (< 0.001). T3 reduced soil pH value and exchangeable acidity at Kibirizi, while at Karongi and Ruli, these effects were observed with T4 and T5. T4 and T5 significantly increased the content of soil carbon (C), nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg). The amount of nutrients released was regulated by the amount and type of mulch applied, the agro-ecological conditions and the soil properties at each site. The increased soil nutrient levels led to improved soil fertility conditions and increased coffee yields. The coffee yields were significantly increased with T1 at Karongi (< 0.05) by up to 1.9 t ha−1. T2 and T3 had significantly higher yields at Kibirizi. Yields at Kibirizi were 48% lower compared to yields at Karongi; at this site, T1, T2, T3, T4 and T5 increased yields by 57%, 26%, 31%, 20% and 28%, respectively, when compared to the no mulching treatment (T6). However, coffee yields over 1.9 t ha−1 can only be obtained with additional applications of inorganic fertilizer at different rates depending on the agro-ecological zone and soil type.  相似文献   
92.
Juniper encroachment into otherwise treeless shrub lands and grasslands is one of the most pronounced environmental changes observed in rangelands of western North America in recent decades. Most studies on juniper change are conducted over small areas, although encroachment is occurring throughout regions. Whether changes in juniper cover can be assessed over large areas with the use of long-term satellite data is an important methodological question. A fundamental challenge in using satellite imagery to determine tree abundance in rangelands is that a mix of trees, sagebrush, and herbaceous cover types can occur within a given image pixel. Our objective was to determine if spectral mixture analysis could be used to estimate changes in Rocky Mountain juniper (Juniperus scopulorum Sarg) and Utah juniper (Juniperus osteosperma [Torr.] Little) cover over 20 yr and 20000 ha in southeast Idaho with the use of Landsat imagery. We also examined the spatial patterns and variation of encroachment within our study area using Geographic Information Systems–based data sets of grazing use, land-cover types, and topography. Juniper cover determined from 15-cm-resolution digital aerial orthophotography was used to train and validate juniper presence/absence classification in 1985 and 2005 Landsat images. The two classified images were then compared to detect changes in juniper cover. The estimated rate of juniper encroachment over our study area was 22–30% between 1985 and 2005, consistent with previous ground-based studies. Moran’s I analysis indicated that juniper encroachment pattern was spatially random rather than clustered or uniform. Juniper encroachment was significantly greater in grazed areas (P = 0.02), and in particular in grazed shrub land cover type (P = 0.06), compared to ungrazed areas. Juniper encroachment was also greater on intermediate slopes (10–35% slopes) compared to steeper or flatter terrain, and encroachment was somewhat less on north-facing (P = 0.03) and more on west-facing (P = 0.02) slopes compared to other aspects.  相似文献   
93.
This study quantified herbaceous biomass responses to increases in honey mesquite (Prosopis glandulosa Torr.) cover on two soils from 1995 to 2001 in north central Texas. Vegetation was sampled randomly with levels of mesquite ranging from 0% to 100%. With no mesquite covering the silt loam soils of bottomland sites, peak herbaceous biomass averaged (±SE) 3 300 ± 210 kg · ha−1 vs. 2 560 ± 190 kg · ha−1 on clay loam soils of upland sites (P = 0.001). A linear decline of 14 ± 2.5 kg · ha−1 in herbaceous biomass occurred for each percent increase in mesquite cover (P = 0.001). The slope of this decline was similar between soils (P = 0.135). Herbaceous biomass with increasing mesquite cover varied between years (P = 0.001) as did the slope of decline (P = 0.001). Warm-season herbaceous biomass decreased linearly with increasing mesquite cover averaging a 73 ± 15% reduction at 100% mesquite cover (P = 0.001) compared to 0% mesquite cover. Cool-season herbaceous biomass was similar between soils with no mesquite, 1 070 ± 144 kg · ha−1 for silt loam vs. 930 ± 140 kg · ha−1 for clay loam soils, but averaged 340 ± 174 kg · ha−1 more on silt loam than on clay loam soils at 100% mesquite cover (P = 0.004). Multiple regression analysis indicated that each centimeter of precipitation received from the previous October through the current September produced herbaceous biomass of 51 kg · ha−1 on silt loam and 41 kg · ha−1 on clay loam soils. Herbaceous biomass decreased proportionally with increasing mesquite cover up to 29 kg · ha−1 at 100% mesquite cover for each centimeter of precipitation received from January through September. Increasing mesquite cover reduces livestock forage productivity and intensifies drought effects by increasing annual herbaceous biomass variability. From a forage production perspective there is little advantage to having mesquite present.  相似文献   
94.
Greater sage-grouse (Centrocercus urophasianus) habitat management involves vegetation manipulations to increase or decrease specific habitat components. For sage-grouse habitat management to be most effective, an understanding of the functional response of sage-grouse to changes in resource availability is critical. We investigated temporal variation in diet composition and nutrient content (crude protein, calcium, and phosphorus) of foods consumed by preincubating female sage-grouse relative to food supply and age of hen. We collected 86 preincubating female greater sage-grouse at foraging areas during early (18–31 March) and late (1–12 April) preincubation periods during 2002–2003. Females consumed 22 food types including low sagebrush (Artemisia arbuscula Nutt.), big sagebrush (Artemisia tridentata Nutt.), 15 forb species, 2 insect taxa, sagebrush galls, moss, and a trace amount of unidentified grasses. Low sagebrush was the most common food item, but forbs were found in 89% of the crops and composed 30.1% aggregate dry mass (ADM) of the diet. ADM and species composition of female diets were highly variable between collection periods and years, and coincided with temporal variation in forb availability. Adult females consumed more forbs and less low sagebrush compared to yearling females. Because of higher levels of crude protein, calcium, and phosphorus, forbs were important diet components in comparison with low sagebrush, which had the lowest nutrient content of all foods consumed. Our results indicate that increased forb abundance in areas used by female sage-grouse prior to nesting would increase their forb consumption and nutritional status for reproduction. We recommend that managers should emphasize delineation of habitats used by preincubating sage-grouse and evaluate the need for enhancing forb abundance and diversity.  相似文献   
95.
The use of global positioning system (GPS) technology to study livestock movement has been widely adopted in range and animal sciences; however, the methods for processing GPS collar data are varied among researchers and often involve repetitive, time-consuming steps to get data into a format available to view in geographic information system (GIS) software. The objective of this technical note is to present a method for quickly processing uniform datasets using a commonly available commercial GPS collar and Program R. Data generated by a Lotek 3300LR GPS collar were processed in seconds using “Lotek_Function,” which was developed using R coding. Traditional hand-processing of the same data generally requires 30 or more minutes and is prone to error due to the tedious, repetitive nature of the task. Due to the open-source nature of Program R, base codes can be modified to fit specific researchers’ needs when incorporating GIS data layers or models to assess behavior based on motion sensor data output from collars.  相似文献   
96.
Ventenata (Ventenata dubia [Leers] Coss.) is an exotic annual grass that can invade intermountain rangeland plant communities, where it can form monotypic stands, degrade wildlife habitat, and reduce livestock forage. There is limited information on ventenata control in rangelands as it has only recently been identified as a substantial problem. Imazapic is a pre-emergent herbicide commonly used to control other exotic annual grasses and, therefore, is likely to control ventenata in rangelands. We evaluated five application rates of imazapic (0  175 g ae  ha 1) on ventenata and other exotic annual grass control and plant community response at two rangeland sites in 2 yr (2014 and 2015). Imazapic reduced exotic annual grass (largely ventenata) cover and density, with greater control with increasing imazapic rates. Exotic annual grass density at the highest levels of control (82%−94%) was 184  299 plants  m 2 the first yr after imazapic application. Exotic annual grasses fully recovered in the second or third yr after imazapic application. Bare ground generally increased with imazapic application. However, density of perennial vegetation (grasses and forbs) did not vary among treatments. Perennial vegetation cover generally did not increase with imazapic control of ventenata and other exotic annual grasses. Imazapic can control ventenata; however, even at the highest rates, control was not enough to shift the dominance from exotic annual species to perennial species. Integrating other treatments with imazapic application may be a strategy to improve ventenata control and increase perennial vegetation and will require further investigation. The difficulty and likely expense of achieving substantial and lasting control of ventenata suggest, similar to other exotic annual grasses, that preventing ventenata invasion and dominance should be a high management priority.  相似文献   
97.
Long-term vegetation dynamics across public rangelands in the western United States are not well understood because of the lack of large-scale, readily available historic datasets. The Bureau of Land Management’s Soil-Vegetation Inventory Method (SVIM) program was implemented between 1977 and 1983 across 14 western states, but the data have not been easily accessible. We introduce the SVIM vegetation cover dataset in a georeferenced, digital format; summarize how the data were collected; and discuss potential limitations and biases. We demonstrate how SVIM data can be compared with contemporary monitoring datasets to quantify changes in vegetation associated with wildfire and the abundance of exotic invasive species. Specifically, we compare SVIM vegetation cover data with cover data collected by BLM’s Assessment, Inventory, and Monitoring (AIM) program (2011–2016) in a focal area in the northern Great Basin. We address issues associated with analyzing and interpreting data from these distinct programs, including differences in survey methods and potential biases introduced by spatial and temporal variation in sampling. We compared SVIM and AIM survey methods at 44 plots and found that percent cover estimates had high correspondence for all measured functional groups. Comparisons between historic SVIM data and recent AIM data documented significant declines in the occupancy and cover of native shrubs and native perennial forbs, and a significant increase in exotic annual forbs. Wildfire was a driver of change for some functional groups, with greater change occurring in AIM plots that burned between the two time periods compared with those that did not. Our results are consistent with previous studies showing that many native shrub-dominated plant communities in the Great Basin have been replaced by exotic annuals. Our study demonstrates that SVIM data will be an important resource for researchers interested in quantifying vegetation change through time across public rangelands in the western United States.  相似文献   
98.
99.
Chaining and prescribed fire treatments have been widely applied throughout pinyon–juniper woodlands of the western United States in an effort to reduce tree cover and stimulate understory growth. Our objective was to quantify effects of treatment on woodland recovery rate and structure and the relative dominance of the two major tree species in our Great Basin study area, singleleaf pinyon (Pinus monophylla Torr. & Frém.) and Utah juniper (Juniperus osteosperma [Torr.] Little). We resampled plots after a 40-yr interval to evaluate species-specific differences in tree survivorship and establishment from posttreatment age structures. Tree age data were collected in 2008 within four chained sites in eastern Nevada, treated in 1958, 1962, 1968, and 1969 and originally sampled in 1971. The same data were collected at five prescribed burn sites treated in 1975 and originally sampled in 1976. All chained sites had greater juniper survival than pinyon survival immediately following treatment. Chained sites with higher tree survival also had the greatest amount of new tree establishment. During the interval between treatment and the 2008 sampling, approximately four more trees per hectare per year established following chaining than following fire. Postfire tree establishment only occurred for the initial 15 yr and was dominated by juniper. Establishment after chaining was dominated by juniper for the first 15 yr but by pinyon for 15–40 yr following treatment. Results support an earlier successional role for juniper than for pinyon, which is more dependent upon favorable microsites and facilitation from nurse shrubs. Repeated chaining at short intervals, or prescribed burning at infrequent intervals, will likely favor juniper dominance. Chaining at infrequent intervals (> 20–40 yr) will likely result in regained dominance of pinyon. Chaining treatments can be rapidly recolonized by trees and have the potential to create or amplify landscape-level shifts in tree species composition.  相似文献   
100.
Vegetation changes were evaluated over an 11-year period (1995–2005) on 2 light- and 2 conservative-stocked Chihuahuan Desert pastures in south central New Mexico. Grazing treatments were applied to the pastures over a 5-year period from 1997 through 2001. Pastures were not grazed in the 1995–1996 and 2002–2005 periods due to drought. During the 1997–2001 grazing period, grazing use of primary forage species averaged 29% and 40% on light- and conservative-stocked rangelands, respectively. Grazing intensity was consistently higher on conservative-stocked than light-stocked pastures. During our study heavy grazing occurred only in 1 year on pastures with conservative stocking. There were no differences in species or species categories (grasses, forbs, shrubs) of autumn standing crop and basal cover between light-and conservative-stocked pastures. Standing crop of total vegetation and perennial grasses showed large fluctuations among the years due to variable rainfall. Under both treatments, total herbaceous standing crop was unchanged, but perennial grass standing crop declined by over 50% when the last 3 years of study were compared with the first 3 years of study. Broom snakeweed (Gutierrezia sarothrae Pursh), a poisonous half shrub, increased in standing crop and cover during the study. Basal cover of total perennial grasses declined less under light than conservative stocking during the study period. However, climatic conditions exerted the overriding influence on vegetation standing crop and basal cover. Our study indicates that light stocking in the Chihuahuan Desert does not increase perennial grass production compared to conservative grazing but it could have a small benefit in maintaining perennial grass cover during drought. We believe our findings have broad application in the Chihauhuan Desert, but caution they might not apply well to other arid rangeland types.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号