首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   5篇
水产渔业   5篇
  2015年   5篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
根据2013年1–9月辽宁远洋渔业有限公司“福荣海”轮南极磷虾拖网调查数据,以3n mile/h拖曳获得的产量作为CPUE指标,对南极磷虾资源时空分布进行了分析。结果显示,1–6月的月均CPUE值相对稳定,7–9月逐月下降。各渔区中平均CPUE值以48.1区最高,为(25.12±31.04) t/h;48.3区最低,为(11.49±12.06) t/h;CPUE值的波动幅度48.1区大于48.2和48.3区。48.1区的南极磷虾群主要分布于0 –100 m水层,CPUE值以25–50 m水层为最高;48.2区虾群主要分布于50–150 m水层,CPUE值以100–150 m水层最高;48.3区虾群主要分布于100–250 m水层,CPUE值以200– 250 m水层最高。海底深度<500 m的近岸海域是磷虾主要集群分布区和商业捕捞渔场,以水深<250 m的浅水区渔场虾群密度最大,平均CPUE值为(17.54±35.26) t/h,水深250–1500 m的深水区渔场平均CPUE值变化较小,在12.0–14.0 t/h之间波动,但水深>1500 m时,平均CPUE值降到(9.62±9.54) t/h。作业渔场的表温SST主要集中在-1–2℃,当SST为-1–0℃时,平均CPUE值最高。探捕调查发现了5个主要的磷虾集群,集群时间可达30 d以上,但集群密度随时间发生变化。调查结果可为研究南极磷虾渔场形成机制和渔业管理提供基础数据,并为商业捕捞提供参考。  相似文献   
2.
采用生理生态学和酶学分析方法,测定了不同温度下中华原钩虾的摄食率和消化酶活力。结果显示,温度对中华原钩虾幼体消化酶活力的影响差异极显著(P<0.01)。在15?25℃范围内,胃蛋白酶、类胰蛋白酶及淀粉酶的活力随培养温度的升高而增加;在20?25℃范围内,胃蛋白酶、类胰蛋白酶和淀粉酶活力均处于较高水平,说明中华原钩虾幼体在此温度范围内具有较好的消化吸收能力。作为甲壳动物食性指标的淀粉酶/类胰蛋白酶活力(A/T)比值在1.2?1.5之间,说明此阶段中华原钩虾幼体偏植物食性。中华原钩虾日摄食率受温度影响显著(P<0.05),在水温20?25℃之间,中华原钩虾幼体具有最大摄食率,其回归方程为:y = ?0.754 x2+33.297 x?277.57 (R2=0.958),最大日摄食率为89.84%。成体在20℃左右达到日摄食率的最大值,其回归方程为:y = ?0.247 x2+10.463 x– 78.287 (R2=0.998),最大日摄食率为32.47%;中华原钩虾幼体和成体饵料吸收率均随温度升高呈先上升后下降的趋势,各温度处理组幼体的饵料吸收率均高于成体。根据饵料吸收率回归方程,可得到最大饵料吸收率,幼体为59.86%,成体为56.86%,对应的温度分别为幼体21.30℃、成体21.24℃。因此,20?25℃是培育中华原钩虾的适宜水温范围。  相似文献   
3.
根据2011年6月、10月、12月和2012年4月4个航次对獐子岛海域水温、分粒径Chl a浓度、透明度等参数的调查数据,分析了该海域Chl a浓度的时空变化特征,探讨了浮游植物的粒径结构、光合固碳能力及碳流途径。研究结果显示,獐子岛海域表、底层Chl a浓度年变化范围分别为0.07–6.28 µg/L和0.16–5.28 µg/L,年平均浓度分别为(1.60 ± 1.38) µg/L和(1.31 ± 1.10) µg/L,存在显著的季节差异(P<0.05)和空间分布的不均匀性,表、底层Chl a含量秋、春季节差异极显著(P<0.01)。表、底层浮游植物粒径组成均以微型浮游植物(Nano-phytoplankton)为主,贡献率分别为50.85%和44.64%。典范对应分析(CCA)结果表明,NO3-、PO43-和NH4+的3种形态无机营养盐对微型浮游植物有显著的影响,而水温和NO2-对微微型浮游植物(Pico-phytoplankton)影响显著。该海域初级生产力变化范围为40.31–1017.64 mg C/(m2·d),平均为(386.07±281.80) mg C/(m2·d)。超过38.3%的总初级生产通过微食物环向高营养级传递并入经典食物链,微食物环在獐子岛虾夷扇贝养殖生态系统中扮演着重要角色。  相似文献   
4.
利用2008-2013年水质调查资料,分析了青岛市黄岛区南部海域营养盐分布与变化特征,并采用营养指数(E)法和有机污染综合指数(A)法对该海域海水的营养状况和有机污染状况进行了评价。结果显示,(1) 2012-2013年调查期间,无机氮含量范围为20.82-197.62 µg/L,活性磷酸盐为4.52-52.91 µg/L,COD为0.39-1.25 mg/L。除个别站点活性磷酸盐含量超标外,其余站点活性磷酸盐含量以及全部站点无机氮和COD含量均符合二类海水水质标准要求。(2) 调查海域无机氮以春季最高(86.42 µg/L),秋季次之,夏季最低(38.59 µg/L);活性磷酸盐以秋季最高(18.68 µg/L),春季次之,夏季最低(9.10 µg/L);COD以夏季最高(0.962 mg/L),秋季次之,春季最低(0.682 mg/L)。(3) 调查海域无机氮和COD含量2008-2011年呈逐年降低的变化趋势,2012年又有所增高;活性磷酸盐含量2008-2010年呈逐年降低的变化趋势,2010–-2012年呈逐年增高的变化趋势。研究表明,调查海域海水的营养水平较低,未达到富营养化水平,发生赤潮的可能性较小。调查海域水质状况良好,未受到有机污染。  相似文献   
5.
采用完全双列杂交法对刺参中国群体(C)和韩国群体(K)进行群体间杂交和群体内自繁,获得C(♀)×C(♂)、K(♀)×K(♂)、K(♀)×C(♂)和C(♀)×K(♂) 4个交配组合的子一代。分析了各交配组受精率、孵化率、附着变态率、浮游幼体和幼参阶段的生长和抗病能力以及杂交子代的杂种优势。结果显示,杂交组与自繁组在受精率和孵化率等方面不存在显著性差异,杂交组附着变态率高于自繁组。C(♀)×K(♂)组在幼参期体长平均值均大于其他3个组,并表现出显著性差异,其体长杂种优势率在9.43%–23.75%之间;其体重从150日龄后表现出杂种优势,在4.09%–34.96%之间。而K(♀)×C(♂)组在幼参期体长和体重除在150日龄时表现为杂种优势,其他时间均表现为杂种劣势。K(♀)×C(♂)组抗灿烂弧菌病能力最强,杂种优势率为26.21%。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号