首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3039篇
  免费   313篇
  国内免费   518篇
林业   64篇
农学   89篇
基础科学   260篇
  2149篇
综合类   649篇
农作物   35篇
畜牧兽医   214篇
园艺   83篇
植物保护   327篇
  2024年   34篇
  2023年   156篇
  2022年   144篇
  2021年   141篇
  2020年   115篇
  2019年   144篇
  2018年   171篇
  2017年   156篇
  2016年   179篇
  2015年   166篇
  2014年   136篇
  2013年   179篇
  2012年   240篇
  2011年   234篇
  2010年   242篇
  2009年   242篇
  2008年   236篇
  2007年   204篇
  2006年   134篇
  2005年   222篇
  2004年   136篇
  2003年   134篇
  2002年   77篇
  2001年   32篇
  2000年   16篇
排序方式: 共有3870条查询结果,搜索用时 31 毫秒
211.
黄土高原退耕还林(草)环境效应分析   总被引:16,自引:8,他引:16  
焦峰  温仲明  李锐 《水土保持研究》2005,12(1):26-29,78
退耕还林(草)是黄土高原恢复植被、改善生态的重要措施之一。随着退耕还林(草)工程的深入,其产生的经济、社会和生态效应也越来越广泛地受到人们的关注。对黄土高原退耕还林(草)影响下的土地利用格局演变、生态和社会效应进行了分析,提出了黄土高原尚待或进一步深化研究的几个问题。  相似文献   
212.
利用树木径向生长仪研究了黄土丘陵区6年生油松(Pinus tabulaef ormis)、山杨(Populus davidiana)和辽东栎(Quercus liaotungensis)及林下灌木胡颓子(Elaegnus umbellata)4种林木整个生长季茎干的径向变化,发现4种林木的径向变化表现为膨胀收缩旋回增长的模式。在整个生长季中,山杨从5月到10月径向持续增长,增长时间最长;而油松和胡颓子的径向生长主要发生在7月份,从8月份开始其增长速率变缓;辽东栎在整个生长季节的径向生长最小。在整个生长季内,山杨径向增长了2.63 mm,胡颓子为0.64 mm,油松和辽东栎则分别为0.40 mm和0.26 mm。辽东栎日收缩量与膨胀量明显大于其他树种。通过对影响林木径向生长的15种环境因子进行主成分分析后,将主要环境因子归结为温度影响因子、湿度影响因子和降水影响因子3个主成分,并提取了影响该区几种林木生长的主要环境因子:日大于0℃的积温、最低6 h相对湿度和日降雨量。采用线性逐步回归方法,建立了日膨胀量与日收缩量与3个主要环境因子之间的关系。发现日收缩量与日大于0℃的积温成正相关,而与最低6 h相对湿度和日降雨量均呈负相关关系;而日膨胀量亦与日大于0℃的积温成正相关,而与其他环境因子的关系随着树种的不同而不同,表现出较大的变异性。  相似文献   
213.
[目的]分析牛栏江流域上游保护区水土流失治理模式,以期为流域水土流失治理提供新的思路。[方法]基于DEM数据在ArcGIS内进行子流域自动提取,结合遥感影像进行人工交互解译、修正以确定子流域;以划分的子流域为基本单元进行定性与定量赋分并计算综合得分,依据综合得分确定流域水土保持分区及其主导功能;根据确定的水土保持分区主导功能进行“四型”小流域治理模式配置。[结果]牛栏江流域上游保护区共划分9个子流域,确定4个水土保持分区;在各水土保持分区分别构建以生态安全型、生态景观型、生态经济型和生态清洁型为主的“四型”小流域治理模式。[结论]子流域可作为牛栏江流域上游保护区“四型”小流域水土流失治理模式配置的基本单元,水土保持主导功能可作为“四型”小流域模式配置的依据,提供因型施策、精准至区的水土流失科学治理模式。  相似文献   
214.
林地开垦后坡面侵蚀过程与土壤养分流失的研究   总被引:14,自引:8,他引:14  
林地被人为开垦破坏后 ,加速侵蚀是导致坡面土壤养分流失的根本原因。坡面土壤养分流失的空间分布与坡面侵蚀方式和侵蚀强度的空间分布相一致 ,浅沟沟槽是坡面土壤养分流失最严重的部位。土壤养分流失在开垦初期非常迅速 ,开垦耕种 5 a后 ,土壤养分含量可减少 5 0 %。土壤剖面中 A层的流失是土壤养分流失的标志。  相似文献   
215.
天然径流量是流域气候及下垫面综合作用的结果,同时是流域水资源分配的重要依据。深入探究长时间序列年径流量时间变化特征对流域水资源调控以及水资源可持续利用意义重大。基于黄河1470—2018年长时间序列天然径流量数据,综合采用EMD经验模态分解法、滑动平均法以及距平累积法揭示黄河549年间天然径流量的年际变化与周期变化特征。结果表明,黄河年天然径流量变化过程具有显著的随机特征,随年份不同呈现波动性变化,5%及95%频率的年天然径流量分别为337.0亿m3和681.0亿m3。采用距平累积法可将黄河近549年天然径流序列以1825年为界分为2个时期;黄河年天然径流量以2.8年变化周期最为显著,其次为23.8年、47.3年、5.6年、11.3年周期规律,出现该周期性规律主要是由于太阳黑子活动、厄尔尼诺现象以及地极移动振幅变化因子的影响。  相似文献   
216.
水土保持对偏关河径流和泥沙的影响分析   总被引:2,自引:0,他引:2       下载免费PDF全文
 偏关河流域水土保持面积从1959年的1万1593hm2增加到1996年的5万5338hm2,占流域面积的28.90%。年径流量、常水径流量与年份和各类水土保持措施之间,均呈极显著负相关,年径流量与年降水量、汛期降水量和有效降水量,均呈显著正相关,而常水流量与年降水量、汛期降水量和有效降水量关系很弱;偏关河流域小型蒸发器测定的蒸发量与年份呈显著负相关,但径流和泥沙变化并没有增加,说明水土保持是引起径流量和泥沙量变化的主要原因。洪水径流量、年输沙量和洪水输沙量变化一致,与年降水量、汛期降水量和有效降水量均呈显著正相关,而与水土保持措施面积呈不显著的负相关。  相似文献   
217.
不同糙率坡面水力学特征的试验研究   总被引:7,自引:0,他引:7  
在室内试验的基础上,采用定床阻力试验研究了坡面流水力学参数(雷诺数、佛汝德数、阻力系数和流速)随床面糙率、流量和坡度的变化规律。初步得出以下结论:(1)在床面和流量相同条件下,坡面流雷诺数和佛汝德数均随坡度的增加而增大。(2)在坡度和流量相同情况下,随着坡面粗糙度增加,坡面流雷诺数和佛汝德数均呈减小趋势;同时水流流速减小,阻力系数增大,这说明水流克服阻力做功所消耗的能量也增加。  相似文献   
218.
本文分析了长期试验土壤酶活性与土壤有机C、全N、有效P含量、主要微生物类群之间的关系。相关分析表明,土壤脲酶、碱性磷酸酶、蛋白酶活性随土壤有机C含量的增加而增加,蔗糖酶、过氧化氢酶活性与有机C之间的关系因施肥种类及种植方式的不同而不同;微生物数量仅真菌与脲酶、蛋白酶活性之间的相关性达到显著水平。除过氧化氢酶外,其它4种酶的活性均与当年种植冬小麦处理的产量存在显著相关关系。利用主成分分析与通径分析揭示了土壤酶活性与养分之间的内在关系及酶活性对土壤养分的影响。根据主成分分析结果,旱地土壤肥力状况用脲酶、碱性磷酸酶、蛋白酶活性作为综合评价指标优于过氧化氢酶与蔗糖酶。  相似文献   
219.
[目的]研究黄土高塬沟壑区典型小流域综合治理的成效以及生态文明建设时期面临的问题,旨在为该区域高质量发展提供理论支持和实践经验。[方法]以陕西省长武县王东沟小流域综合治理试验示范研究实践为例,基于1986年以来的监测和研究资料,总结分析了该流域30 a多来不同时段在生态环境、土地生产力和农民经济收入等方面的变化。[结果]王东沟小流域综合治理过程存在明显的阶段性。①综合治理阶段(1986—1995)。以提高土地生产力为突破口,重点提高粮食产量和人均经济收入。同时从塬面到沟道综合整治水土流失,合理开发利用土地。②生态保护阶段(1996—2005)。更新与升级粮果管理措施,保护和改善生态环境,进一步稳定和提高了土地生产力。③高质量发展试验示范研究阶段(2006—2019)。以王东沟小流域为试点,从发展绿色高效技术的角度进行研究和示范,探索适合小流域内涵式高质量绿色发展的技术体系,为黄土高塬沟壑区的高质量发展奠定基础。[结论]为实现黄土高塬沟壑区的高质量发展,必须在生态文明理念指引下,重点研究流域生态管理和技术创新体制和机制建设,在总体控制水土流失基础上,保障人居环境的生态性,社会经济系统发展的可持续性以及流域生态系统结构和功能的和谐与完整性。  相似文献   
220.
盘式吸渗仪已成为测定田间土壤水力参数的重要工具之一,自动监测装置的应用将进一步提高试验的精确度并加快试验进程。该文介绍了一种试验装置,通过连接在储水管上下两端的传感器实时压差监测,以此确定入渗水量的变化过程,并通过一系列试验,对试验装置的可靠性进行了验证,将试验装置应用到实际测定土壤水力参数中。试验结果表明:自动监测装置通过测定储水管的压差,并通过相应关系代换为储水管水位变化来采集试验数据的方法是可靠的。通过与人工读数方法测定的结果对比表明,其精度可以达到试验要求;对于本试验土壤,用自动监测装置采集的数据来确定吸渗率的时间可以控制在30 s~4 min之间。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号