首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   9篇
林业   7篇
农学   10篇
基础科学   3篇
  49篇
综合类   11篇
农作物   13篇
水产渔业   13篇
畜牧兽医   38篇
园艺   2篇
植物保护   29篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   3篇
  2019年   6篇
  2018年   6篇
  2017年   6篇
  2016年   16篇
  2015年   7篇
  2014年   7篇
  2013年   22篇
  2012年   15篇
  2011年   8篇
  2010年   7篇
  2009年   7篇
  2008年   12篇
  2007年   2篇
  2006年   5篇
  2005年   2篇
  2004年   4篇
  2002年   1篇
  2000年   1篇
  1998年   1篇
  1997年   4篇
  1996年   3篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1983年   4篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
  1968年   1篇
排序方式: 共有175条查询结果,搜索用时 15 毫秒
51.
Salinity adversely affects plant growth, photosynthesis, and availability of nutrients including iron. Rice (Oryza sativa L.) is susceptible to soil salinity and highly prone to iron (Fe) deficiency due to lower release of Fe‐chelating compounds under saline conditions. In order to investigate the effects of salinity and low iron supply on growth, photosynthesis, and ionic composition of five rice genotypes (KS‐282, Basmati Pak, Shaheen Basmati, KSK‐434 and 99417), a solution culture experiment was conducted with four treatments (control, 50 mM NaCl, Fe‐deficient, and 50 mM NaCl + Fe‐deficient). Salinity and Fe deficiency reduced shoot and root growth, photosynthetic and transpiration rates, chlorophyll concentration, and stomatal conductance. The reduction in all these parameters was more in the interactive treatment of salinity and low Fe supply. Moreover, a significant increase in shoot and root Na+ with corresponding decrease in K+ and Fe concentrations was also observed in the combined salinity and Fe‐deficiency treatment. Among the tested genotypes, Basmati Pak was the most sensitive genotype both under salt stress and Fe deficiency. The genotype KS‐282 performed better than other genotypes under salinity stress alone, whereas Shaheen Basmati was the best genotype under Fe deficiency in terms of all the studied parameters.  相似文献   
52.
53.
The objectives of this study were to describe the prevalence and distribution of serum antibodies to Bluetongue virus (BTV) in a sample of 38 sheep flocks in northern areas of the North West Frontier Province of Pakistan and to identify demographic and productivity variables that are associated with BTV seropositivity. Blood samples were taken from a random sample of ewes in each flock in April 1995. The owners of the flocks were interviewed regarding some demographic, husbandry and productivity variables of the flocks on the day of blood sampling. A competitive enzyme-linked immunosorbent assay was conducted to test the serum samples for BTV group-specific antibodies. BTV seropositive reactions were obtained in 184 (48.4%) out of 380 tested sera, and in 89.5% (34/38) of the flocks. In the 34 seropositive flocks, the prevalences ranged from 12.5 to 100% (median = 47). A multivariable logistic analysis was carried out to study the influence of demographic and productivity variables on the BTV serological status of the sheep flocks. Abortion risk in the previous lambing season was mildly associated with the serological status of the flock (adjusted odds ratio = 1.16, P = 0.07). For the seropositive flocks, a linear multiple regression showed that distance travelled by the flock during transhumant movement was significantly associated with percent seropositivity (partial regression coefficient (± SE) = − 0.091 ± 0.045).  相似文献   
54.
55.
The availability of soil nutrients, which are recycled through the decomposition of crop residues, is important for the management of cropped soils. However, knowledge regarding the influence of contact between crop residues and soil on the dynamics of carbon (C) and nitrogen (N) in soil is limited. In particular, the effect of particle size on decomposition is not well-known, and conceptual approaches for modelling the soil-residue contact in a decomposition model remain scarce. Therefore, we analysed and modelled the effect of maize stem particle length on decomposition. We incubated maize stem residues with particle sizes of 0.02, 0.5, 2 and 5 cm in length in a loamy soil at 25 °C over 301 days. We continuously measured the mineralisation of C and N and determined the chemical evolution of the remaining particles. We used the decomposition model CANTIS which takes into account the soil-residue contact, using a contact factor, KMZ. The decomposition rates of smaller maize particles were higher than those of larger particles during the early phases of decomposition. However, these differences were not maintained after 301 days. These results suggest that a larger size of the maize particles only slowed the rate of mineralisation in the short term but did not modify decomposition in the medium term. We proposed a new formalism for expressing the changes in soil-residue contact with different particle sizes. The contact factor KMZ was calculated using the standardised specific surface area and can be applied more widely to residues that differ in morphology and density.  相似文献   
56.
57.
ABSTRACT

Phosphorus (P) is a finite, non-renewable, and natural resource and a vital major nutrient for plant metabolic and developmental processes. However, adverse soil biogeochemical characteristics of alkaline-calcareous soils (especially Aridisols) and highly weathered acid soils (i.e., Ultisols and Oxisols) render orthophosphate (Pi) as the least available major nutrient due to P complexation, sorption, and/or fixation. In such soil environments, plant bioavailable P is only a small fraction of total soil P, seriously limiting crop growth and production. Different plant species, and even cultivars of the same species, may display a suite of growth responses that enable them to solubilize and scavenge soil P either by enhancing external Pi acquisition or reprioritizing internal Pi use under P-stress soil environments. This paper reports relative growth responses, P acquisition and P-use efficiency characteristics by 14 cultivars of spring wheat (Triticum aestivum L.) grown in solution culture with high/low P supply induced by applying soluble NH4H2PO4, sparingly soluble rock phosphate, and Ca3(PO4)2. The wheat cultivars exhibited considerable genetic diversity in biomass accumulation, P concentrations, P contents, factor (PSF) and P efficiency characteristics [i.e., P utilization efficiency (PUE), P efficiency (PE), and PE ratio (PER)]. Plant growth and PE parameters were significantly correlated, while P uptake was linearly related with biomass increase and solution pH decrease. The wheat cultivars with high PUE, PER and P uptake, and low PSF, and plant P concentration were more efficient in utilizing P and, hence, more tolerant under P-stress environment. Biomass and P contents of “P efficient/low-P tolerant” wheat cultivars were superior to “P inefficient/low-P sensitive” cultivars at all P-stress levels. Hence, “P efficient/low-P tolerant” cultivars are the most desirable wheat genotypes for P-stress environments because they are able to scavenge more P from sparingly soluble P sources or soil-bound P forms.  相似文献   
58.
Selenium in the form of sodium selenite (SSE) is an essential micronutrient which known to possess antioxidant and anticancer properties. This study emphasizes the role of selenium on oxidative stress in experimental rats with N-diethylnitrosamine (DEN) initiated and 2-acetylaminofluorene (2-AAF) promoted multistage hepatocellular carcinogenesis (HCC). Rats were divided randomly into six groups: negative control, positive control (DEN+2-AAF), preventive group (pre-SEE 4 weeks+DEN), preventive control (respective control for preventive group), therapeutic group (DEN+post-SSE 12 weeks) and therapeutic control (respective control for therapeutic group). SSE (4 mg L(-1)) was given to animals before initiation and during promotion phase of HCC. The levels of total protein (TP), conjugated diens (CD), malondialdehyde (MDA), fluorescent pigment (FP), antioxidant activity (AOA) and DNA damage were measured. Supplementation of SSE before the initiation phase of carcinogenicity significantly increased TP and AOA level (p < 0.05) while it decreased the levels of CD, MDA, DNA damage and FP (p < 0.05). Supplementation of SSE during the promotion phase of carcinogenicity significantly decreased the DNA damage and FP level (p < 0.05) and there were negative correlation between the level of AOA and with the level of FP and CD. Thus, supplementation of SSE reduced the adverse changes which occur in liver cancer. However, the chemoprevention effect of SSE was more pronounced when it was supplemented before initiation phase of cancer when compared to promotion phase.  相似文献   
59.
ABSTRACT

We studied the effect of sodium chloride (NaCl) salinity and oxygen deficiency stress on growth and leaf ionic composition of three Eucalyptus species [E. tereticornis, E. camaldulensis (Silverton), and E. camaldulensis (Local)]. Species were grown with control (no NaCl) and salinity (150 mol m?3 NaCl) under hypoxic and non-hypoxic conditions in nutrient solution with five replications following CRD. Species differed significantly in their response to salinity and hypoxia. Absolute shoot dry matter was significantly better in E. camaldulensis (Silverton) in salinity and in E. camaldulensis (Local) in saline hypoxic treatment. E. tereticornis was the most sensitive species to salinity and salinity × hypoxia in the root environment. Sodium (Na+) and chloride (Cl?) concentrations were significantly lower in E. camaldulensis (Local) in non-hypoxic saline treatment compared to the other two species. E. camaldulensis (Silverton) seems to have better tissue compartmentalization, whereas E. camaldulensis (local) seems to have better exclusion of Na+ at the root level.  相似文献   
60.
Among the major nutrients, potassium (K) not only improves yields but also improves quality parameters. Field experiments were conducted to assess the comparative effect of sources and rates of K fertilizer on potato yield and quality on a sandy loam soil. Graded doses of potassium, i.e., 0, 150 and 225 kg ha?1 K2O from sulfate and muriate of potash were applied in triplicate. Recommended dose of nitrogen (N) and phosphorus (P) applied uniformly. Significant increase in tuber yield was observed with 150 kg ha?1 K2O from both the sources over control. Increase in tuber yield with 225 kg ha?1 K2O was statistically non significant compared to 150 kg ha?1. The dry matter and specific gravity were more affected with sulfate of potash (SOP) than muriate of potash (MOP). The quality parameters like dry matter, specific gravity, starch contents, vitamin C, chips color and taste were improved with K application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号