首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1507篇
  免费   76篇
  国内免费   1篇
林业   140篇
农学   220篇
基础科学   23篇
  302篇
综合类   48篇
农作物   87篇
水产渔业   46篇
畜牧兽医   523篇
园艺   66篇
植物保护   129篇
  2023年   10篇
  2022年   20篇
  2021年   32篇
  2020年   32篇
  2019年   24篇
  2018年   67篇
  2017年   56篇
  2016年   69篇
  2015年   39篇
  2014年   40篇
  2013年   119篇
  2012年   57篇
  2011年   77篇
  2010年   60篇
  2009年   45篇
  2008年   68篇
  2007年   54篇
  2006年   45篇
  2005年   40篇
  2004年   34篇
  2003年   39篇
  2002年   41篇
  2001年   28篇
  2000年   26篇
  1999年   30篇
  1998年   14篇
  1997年   10篇
  1996年   16篇
  1995年   11篇
  1994年   10篇
  1993年   11篇
  1992年   18篇
  1991年   20篇
  1990年   30篇
  1989年   21篇
  1988年   14篇
  1987年   20篇
  1986年   17篇
  1985年   17篇
  1984年   11篇
  1983年   12篇
  1982年   14篇
  1981年   17篇
  1980年   14篇
  1979年   21篇
  1978年   15篇
  1977年   11篇
  1970年   8篇
  1969年   14篇
  1968年   12篇
排序方式: 共有1584条查询结果,搜索用时 70 毫秒
61.
Waste milk samples from 103 farms in England and Wales were examined for the presence of β-lactam antibiotics and ESBL-producing Enterobacteriaceae. Approximately 10 months after the initial sampling, further waste milk, environmental and faecal samples from farms shown to be positive for CTX-M Escherichia coli were investigated further. Isolates with an ESBL phenotype were tested by PCR for the presence of blaCTX-M, blaOXA, blaSHV and blaTEM genes. Isolates positive for blaCTX-M were sequenced to determine CTX-M type. Representative isolates were further examined by PFGE, plasmid replicon typing and serotyping. Of particular interest, 21.4% of waste milk samples contained residues of the cephalosporin cefquinome, which was significantly associated with CTX-M bacteria. Such bacteria occurred in 5.8% of the waste milk samples (including 3.9% CTX-M E. coli). CTX-M types identified were 1, 14, 14b and 15, but none of the E. coli were serotype O25, the serotype of the human pandemic strain.  相似文献   
62.
A long-term field study was initiated during 1995 at Central Soil Salinity Research Institute, Regional Research Station, Lucknow(26°47′58′′ N and 80°46′24′′ E) to analyze the effect of agroforestry systems on amelioration of alkali soils. Three agroforestry systems(pastoral, silvipastoral and silvicultural) were compared with the control where no agroforestry system was introduced. Tree-based silvicultural and silvipastoral systems were characterized by tree species Prosopis juliflora and Acacia nilotica along with grass species Leptochloa fusca, Panicum maximum, Trifolium alexandrium and Chloris gayana. Growth of ten-year-old Prosopis juliflora and Acacia nilotica planted in combination with grasses was significantly higher over the silviculture system with the same species. Tree biomass yields of P. juliflora(77.20 t?ha-1) and A. nilotica(63.20 t?ha-1) planted under silvipastoral system were significantly higher than the sole plantation of(64.50 t?ha-1 and 52.75 t?ha-1). Fodder yield under the pastoral system was significantly higher than the silvipastoral system during initial years but it was at par with that of silvipastoral systems after eight years of plantation. The microbial biomass carbon in the soils of silvipastoral systems was significantly higher than in soils under sole plantation of trees and control systems. The Prosopis-based silvipastoral system proved more effective in reducing soil pH, displacing Na+ from the exchange complex, increasing organic carbon and available N, P and K. Improvement in soil physical properties such as bulk density, porosity, soil moisture and infiltration rate was higher in the Prosopis-based silvipastoral system than in the silviculture system or control. On the basis of biomass production and improvement in soil health due to tree + grass systems, silvipastoral agroforestry system could be adopted for sustainable reclamation of highly alkali soils.  相似文献   
63.
Background: Progress of forest production in response to the environment requires a quantitative understanding of leaf area development. Therefore, it is necessary to investigate the dynamics of seasonal crown foliage in order to understand the productivity of mangroves, which play an important role in the subtropical and tropical coastlines of the world. Method: Crown foliage dynamics of the mangrove Rhizophora styloso were studies to reveal patterns of leaf recruitment, survival and seasonal leaf area growth. Results: Flushing of leaves occurred throughout the year, but both flushing and leaf area growth pattern of leaves varied with season. Maximum flushing occurred in summer, but leaf areas did not differ significantly with season. The half-expansion period is longer, and the intrinsic rate of increase was lower in winter. Summer flushed leaves grew faster at their initial stage and reached their maximum area over a shorter period of time. The difference in temperature and air vapor pressure deficit (VPD) between summer and winter contributed to the present dynamics of foliage patterns. The mean leaf longevity was estimated to be 13.1 month. The crown foliage area was almost stable throughout the year. Conclusions: Homeostatic control of the crown foliage area may be accompanied by the existence of ecophysiological mechanisms in R. stylosa. Integrating crown foliage dynamics into forest models represents an important step towards incorporating physiological mechanisms into the models for predicting growth responses to environmental changes and for understanding the complex responses of tree growth and litter production.  相似文献   
64.
Genetic Resources and Crop Evolution - Selection of elite accessions is important to get the maximum quantity of bioactive compounds in medicinal plants. In this study, thirteen accessions...  相似文献   
65.
Genetic Resources and Crop Evolution - Santa Rosa and Frontier are the major Japanese plum (Prunus salicina Lindl.) cultivars grown throughout the world. The present investigation was performed to...  相似文献   
66.
Plant Foods for Human Nutrition - Ficus geniculata (FG) is one of the underutilized fig species in India and throughout the world. However, the different parts of the plant have numerous...  相似文献   
67.
Paddy and Water Environment - The paddy straw was collected in the form of bales with three mechanical process CI (stubble shaver + rectangular baler), CII (stubble...  相似文献   
68.
Early in-season loss of N continues to be a problem in corn (Zea mays L.). One method to improve N use efficiency is fertilizing based on in-season crop foliage sensors. The objective of this study was to evaluate two ground-based, active-optical (GBAO) sensors and explore the use of corn height with sensor readings for improving relationships with corn yield. Two GBAO sensors (GreenSeeker® (GS), Trimble, Sunnydale, CA, USA; and Holland Crop Circle (CC) ACS 470 Sensor®, Holland Scientific, Lincoln, NE, USA) were used within 30 established corn N-rate trials in North Dakota at the V6 and V12 growth stages in 2011 and 2012. Corn height was recorded manually at the date of sensor data collection. At the V6 growth stage, the GS relationship to yield and the INSEY (in-season estimate of yield) value was improved when the sensor reading was multiplied times corn height. At the V12 stage, using the GS, the INSEY relationship with yield was also generally increased when height was considered. The CC-based red/near-infrared INSEY relationship with yield was similar to the GS INSEY. The CC-based red edge/near infrared INSEY relationship was increased with height only at the first sensor date, but not with the second. The second CC-based sensor–INSEY relationship with yield was maximized using sensor reading only. Segregating the 30 site data set into sites with high clay surface textures and sites with medium texture improved all INSEY relationships compared to pooling all sites. Relationships between INSEY and corn yield at no-till sites were significant at the V12 stage in the wetter 2011 growing season, but not at the V6 stage either year, nor at the V12 stage in the very dry 2012 season. In the high clay and medium textured soils at the V6 stage, corn height improved the relationship between INSEY and yield often enough to suggest that incorporating corn height into an algorithm for yield prediction would strengthen yield prediction, and thus improve N rate decisions.  相似文献   
69.
We investigated the magnitude and dynamics of the eddy covariance system (ECS) residual energy (energy balance closure error) for a subsurface drip-irrigated maize (Zea mays L.) field in 2005 and 2006 growing and non-growing (dormant) seasons. The corrections for coordinate rotation, oxygen, frequency, and Webb–Pearman–Leuning corrections improved the slope of the total convective energy (latent heat + sensible heat) with respect to the net available energy (from 0.68 to 0.84), but the data filtering (for horizontal and frictional wind speeds higher than 2 m s?1 and lower than 0.2 m s?1) had little effect on the slope. Also, the number of data points available for the analyses was reduced by 53 % after filtering. Overall, the daytime residual energy varied between ?100 and 200 W m?2 during the dormant seasons and between ?500 and 600 W m?2 during the growing seasons. Most of the nighttime residual energy ranged within ±40 W m?2 during the calendar year in 2005 and within ?60 and 20 W m?2 in 2006. During nighttime, the total convective energy is vertically distributed with respect to (R n ? G), indicating that the total convective energy is independent of the variations in (R n ? G). Secondly, it was observed that nighttime residual energy did not show any seasonal variation patterns throughout the two consecutive years and confined mostly within a narrow range of ±40 W m?2, showing no dependency on seasonal changes in surface conditions. The maximum variation in residual energy was usually around frictional wind speed of 0.3–0.5 m s?1 (varying between ?150 and 300 W m?2) and then decreasing to a range of ±100 W m?2 at higher frictional wind speeds. On average, the residual energy decreased by about 33 W m?2 (after the intercept) for every 1.0 m s?1 increase in frictional wind speed, whereas the residual energy decreased by about 4 W m?2 (after the intercept) for every 1.0 m s?1 increase in horizontal wind speed. Similar diurnal residual energy distribution patterns, with different magnitudes, were observed during growing and dormant seasons. Even though a slight decrease in residual energy was observed with increase in leaf area index (LAI) in both growing seasons, LAI did not have considerable influence on the seasonal variation in the residual energy. The residual energy was also evaluated by separating the data into morning and afternoon hours. We observed that the root-mean-squared difference value is slightly greater for the morning data than the afternoon, indicating greater residual energy in the morning hours due to weaker turbulent mixing than the afternoon. Overall, significant reduction in the available evapotranspiration data after applying a series of corrections possess challenges in terms of utilization of ECS for in-season irrigation management and crop water requirement determinations that needs to be further researched and addressed.  相似文献   
70.
Tree plantation is a proven strategy to improve the salt‐affected soils. However, the efficiency of trees to reclaim the soil varies from species to species. This study was therefore, carried out with the objective of assessing the efficiency of 3‐yr old plantations of Prosopis juliflora (Swartz) D.C. (Mesquite), Eucalyptus tereticornis Sm. (Forest Red Gum) and Dalbergia sissoo Roxb. Ex. D.C. (Indian Rosewood) to improve the sodic soil characteristics in Sultanpur districts of Uttar Pradesh, India (26°10′–26°23′N, 81°50′–82°5′E). Soil samples collected from six depths; 0.0–0.1, 0.1–0.3, 0.3–0.6, 0.6–0.9, 0.9–1.2 and 1.2–1.5 m below the surface, were analysed for chemical and physical properties by following standard methods. The infiltration rate (IR) was determined by double concentric infiltrometer and the permeability by constant head permeameter. The trees were measured for their girth at breast height (at 1.33 m from ground) and crown area within a 100 × 100 m sector at each of the sites selected. There were decreases in soil pH (from 10.06 to 9.64) and exchangeable sodium percentage (from 70.6 to 26.9) at the P. juliflora plantation relative to the E. tereticornis and D. sissoo plantations. The organic carbon and nitrogen content increased from 2.0 and 0.18 g/kg to 3.9 and 0.45 g/kg under P. juliflora at the surface (0.0–0.1 m) layer. There was also more exchangeable Ca2+, Mg2+and K+ at exchange sites and a reduction in exchangeable Na+ 3 yr after establishing the plantations. There was a significant decrease in surface soil (0.1 m) bulk density from 1.66 to 1.37 (t/m3) but an increase in porosity from 41.2 to 46.3% and water holding capacity from 4.3 to 4.8 g/kg. The IR and soil permeability also increased after 3 yr of tree growth. Prosopis juliflora proved more effective than E. tereticornis and D. sissoo in its ability to enrich a sodic soil with organic matter and establishing better soil–water characteristics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号