首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   1篇
  国内免费   20篇
农学   46篇
  5篇
综合类   36篇
农作物   32篇
  2024年   1篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   7篇
  2017年   4篇
  2016年   2篇
  2015年   5篇
  2014年   2篇
  2013年   9篇
  2012年   6篇
  2010年   11篇
  2009年   7篇
  2008年   22篇
  2007年   6篇
  2006年   7篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   4篇
  1997年   4篇
  1996年   2篇
排序方式: 共有119条查询结果,搜索用时 109 毫秒
61.
不同统计遗传模型QTL定位方法应用效果的模拟比较   总被引:5,自引:0,他引:5  
苏成付  赵团结  盖钧镒 《作物学报》2010,36(7):1100-1107
分子遗传和数量遗传的结合,发展了QTL定位研究。随着定位方法与软件的建立和完善,QTL定位的研究越来越多。准确定位的QTL可用于分子标记辅助选择和图位克隆,而假阳性QTL将误导定位信息的应用。本文分析了迄今主要定位方法(软件)对于各种遗传模型数据的适用性。应用计算机模拟4类遗传模型不同的重组自交系群体(RIL),第一类只包含加性QTL;第二类包含加性和上位性互作QTL;第三类包含加性QTL和QTL与环境互作效应;第四类包含加性、上位性互作QTL和QTL与环境互作效应。每类按模拟QTL个数不同设两种情况,共分为8种数据模型(下称M-1~M-8)。选用WinQTLCart 2.5的复合区间作图(下称CIM)、多区间作图前进搜索(MIMF)、多区间作图回归前进选择(MIMR)、IciMapping 2.0的完备复合区间作图(ICIM)、MapQTL 5.0的多QTL模型(MQM)以及QTLnetwork 2.0的区间作图(MCIM)6种程序对8种不同遗传模型的RIL进行QTL检测。结果表明,不同程序适用的遗传模型范围不同。CIM和MQM只适于检测第一类模型;MIMR、MIMF和ICIM只适于检测第一类和第二类模型;只有MCIM适于检测所有4类遗传模型;因而不同遗传模型数据的最适合检测程序不同。由于未知实际数据的遗传模型,应采用在复杂模型程序,如QTLnetwork 2.0,扫描基础上的多模型QTL定位策略,对所获模型用相应模型软件进行验证。  相似文献   
62.
生物统计教学中用SAS程序讲解抽样分布   总被引:1,自引:0,他引:1  
抽样分布是统计推断理论的基础。介绍了利用SAS程序从有限总体和无限总体中模拟抽样的方法,使学生能直观形象地理解样本平均数的抽样分布,掌握总体参数和抽样分布特征数的关系,提高了学生的学习兴趣和理解能力。  相似文献   
63.
中国大豆资源异黄酮含量及其组分的遗传变异和演化特征   总被引:2,自引:1,他引:1  
【目的】中国拥有丰富的栽培大豆和野生大豆资源,研究不同生态区大豆种质异黄酮含量的遗传变异和演化特征为专用型品种的选育奠定基础。【方法】以来自中国各生态区的580份地方品种、106份育成品种、209份野生大豆组成的895份大豆种质为材料,88份国外品种为参照,采用快速高效液相色谱法测定12种大豆籽粒异黄酮,分析其遗传变异和演化特征。【结果】全国野生大豆、地方品种与育成品种大豆异黄酮总含量(TISF)及其组分均存在很大变异。TISF变幅分别为927.29—7932.94、259.38—7725.45和489.67—5968.90μg·g-1,平均分别为2994.51、3241.33和2704.83μg·g-1。从野生种到地方品种再到育成品种,长期人工育种使染料木苷类总含量(尤其是丙二酰基染料木苷)与黄豆苷类总含量(尤其是乙酰基黄豆苷和丙二酰基黄豆苷)增加,大豆苷类总含量(尤其是乙酰基大豆苷)却明显降低,从而导致育成品种平均TISF低于野生种。各生态区的野生和栽培种质的TISF及其组分均有大量变异。野生种TISF与种质来源地经、纬度无显著性相关,栽培种则由于各地人工进化的差异形成了与地理经、纬度均有极显著负相关(r=-0.264和-0.380)的特点。从983份材料中优选出ZYD3621(TISF7932.94μg·g-1)、N3188(TISF7725.45μg·g-1)、N20793(TGL5122.21μg·g-1)等一批高TISF与高组分特异种质可供异黄酮育种利用。【结论】中国从野生种到地方品种再到育成品种,异黄酮含量及其组分的演化特点为栽培大豆平均异黄酮总含量、染料木苷类与黄豆苷类总含量均高于野生种,大豆苷类总含量低于野生种。中国各生态区域内大豆异黄酮及其组分均有丰富变异,从中筛选出一批高含量、高组分种质可供异黄酮育种利用。  相似文献   
64.
杨超  张民  赵团结  何小红  张国正  盖钧镒 《大豆科学》2012,31(5):762-765,770
以菜用大豆苏鲜豆20为材料,采用二因素完全随机区组试验,在大田条件下研究了施肥类型和种植密度对菜用大豆产量及相关农艺性状的影响。结果表明:施肥类型、种植密度以及二者的互作均显著影响菜用大豆苏鲜豆20的产量,在N-P2O5-K2O施入量为55-70-50 kg·hm-2,且氮肥组成为50%普通尿素和50%树脂包膜尿素,种植密度30万株·hm-2的最佳施肥与密度组合下,鲜荚产量达到9 045.11 kg·hm-2,施肥类型和种植密度对菜用大豆的株高和单株有效荚数有显著影响,而对分枝数、主茎节数和鲜百粒重影响不明显。  相似文献   
65.
以我国10个大豆育成品种重要家族的179个品种为材料,选用161个均匀分布于大豆基因组的SSR分子标记,采用PowerMarker Ver. 3.25软件分析参试材料的遗传多样性、相似性与特异性。结果表明,161个位点上共检测到1697个等位变异,单位点变幅为5~24个,平均10.5个;多态信息含量在0.549~0.947间,平均0.832;群体具有丰富的遗传变异。聚类分析表明,179个品种可归为6大类11小类,同一家族的品种有聚为一类的趋势。品种间亲本系数和遗传相似系数显著相关(r = 0.67);山东寿张县无名地方品种(A295)、即墨油豆(A133)、滑县大绿豆(A122)和铜山天鹅蛋(A231) 4个家族亲本系数和相似系数均较小,遗传基础较宽广;矮脚早(A291)、上海六月白(A201)、奉贤穗稻黄(A084)和51-83 (A002) 4个家族亲本系数和相似系数较大,遗传基础较狭窄,这与选择育种品种较多有关;东北白眉(A019)家族与其他家族间的亲本系数和遗传相似系数均最小。家族间特异性分析表明,东北白眉(A019)家族和其他9个家族地理距离较远,存在较多互补、特有、特缺等位变异;而III区和II区地理位置较近,种质交流较多,两区家族间特有、特缺等位点数较少,其中A002、A231和A122三个家族无特有等位变异,A084、A201、A034和A231四个家族无特缺等位变异。本研究结果对拓宽大豆育成品种遗传基础具有指导意义。  相似文献   
66.
为促进转基因大豆的进一步发展,分析当前第1、2代转基因大豆的发展现状,指出其中存在的问题,就其今后发展进行展望,以指导转基因大豆的发展。  相似文献   
67.
大豆籽粒蛋白质含量是复杂数量性状,目前对中国夏播大豆籽粒蛋白质含量等品质性状遗传基础的了解相对较少。本研究对以江淮地区夏大豆蒙8108与骨干亲本南农1138-2杂交育成的NJMN重组自交系群体进行了5个环境田间试验获得表型数据,利用含2 062个SLAF标记的遗传图谱对大豆籽粒蛋白质含量进行加性、上位性QTL定位。结果发现NJMN群体籽粒蛋白质含量存在超亲分离,不同种植环境、家系与环境间互作均存在显著差异。在6号、7号、11号、17号染色体上定位到4个控制籽粒蛋白质含量的加性QTL,其中qProt-17-1未见前人报道,其与环境间存在显著互作效应。还发现3对加性×加性上位QTL,其总的效应值和表型贡献率均高于加性QTL,表明非加性效应在NJMN群体蛋白质含量遗传体系中起了重要作用。  相似文献   
68.
豆卷叶螟是我国南方大豆的主要食叶性害虫之一, 危害严重。本文在观察豆卷叶螟田间发生情况及其在大豆上特殊的卷叶危害特征基础上, 以虫包数、卷叶率、子粒产量为抗性(危害)指标, 应用3个抗感杂交组合[科丰1号×南农1138-2(NJRIKY)、皖82-178×通山薄皮黄豆甲(NJRIWT)和苏88-M21×新沂小黑豆(NJRISX)]衍生的重组自交系群体, 在田间自然虫源条件下于2004—2006年对大豆抗豆卷叶螟的植株反应进行了抗性鉴定。各类指标在各群体均表现有相当大的遗传变异和遗传率, 其中卷叶率指标比其他2类指标遗传变异和遗传率相对较大, 年度间更稳定且与产量的负相关更明显, 因而提出9月上旬卷叶率为鉴定大豆对豆卷叶螟抗性的最佳指标。对NJRIKY、NJRIWT和NJRISX 3个群体抗性遗传分离分析的结果一致表明, 大豆对豆卷叶螟抗性符合2对主基因+多基因的混合遗传模型, 主基因遗传率分别为51.0%、80.5%和56.3%, 多基因遗传率分别为39.1%、11.4%和29.1%。2对主基因的作用方式表现组合间有差异。在此基础上对群体各家系的主基因基因型作了归类, 可供家系抗性选择参考。  相似文献   
69.
大豆品种N8855种子浸种后播于消毒土的盆钵内,置于无光照的生长箱内,生长温度为29℃,于第8天发现-株突变体(M0)子叶表现互生现象,而其余植株子叶表现对生(图A)。此株子叶互生突变体(M0)的M1株系置光照培养箱是生长,同N8855一样表现子叶对生;而经暗室诱导子叶表现互生,植株其余性状同于N8855(图B)。M2代表现同M1一致。这一经暗诱导表现子叶互生现象在双子叶植物上是首例报道。   大豆正常子叶对生情况下,位于子叶节以下的茎状轴称为下胚轴,子叶节至第一对真叶节部分称为上胚轴;暗诱导的子叶互生突变体,其发育的组织结构变得复杂,正常对生子叶节拉开,两片子叶的节间可能为中胚轴,而中胚轴在禾本科植物中常见、在双子叶植物未见报道  相似文献   
70.
亚洲大豆栽培品种遗传多样性、特异性和群体分化研究   总被引:6,自引:2,他引:4  
张军  赵团结  盖钧镒 《中国农业科学》2008,41(11):3511-3520
【目的】研究亚洲大豆栽培品种地理群体的遗传多样性、特异性和群体分化。【方法】应用大豆基因组64对SSR分子标记技术,对亚洲216份栽培大豆品种遗传变异进行分析。【结果】亚洲大豆栽培品种遗传多样性丰富,地理群体(中国东北、中国黄淮、中国南方、朝鲜半岛、东南亚、南亚)间存在较多互补等位变异数,最多的在中国黄淮与南亚群体间;各地理群体拥有各自特有或特缺的等位变异。亚洲大豆全群SSR标记遗传距离聚类(聚成6类)与地理群体分类间有极显著相关性,地理分群有其相应的遗传基础。亚洲全群由2类血缘组成,分别占中国国内和国外2大类群的绝大部分;地理群体间2类血缘组成的差异明显。国内与国外各群体间以中国南方与东南亚群体间分化最小;国外群以东南亚与朝鲜半岛群体间分化最小;国内群以中国黄淮与中国南方群体分化最小。【结论】亚洲大豆栽培品种地理群体间具有位点和等位变异的特异性,各群体间可以相互补充的位点及其等位变异甚丰富,利用国外栽培品种可以拓宽中国品种的遗传基础。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号