首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   14篇
  国内免费   1篇
基础科学   2篇
  83篇
综合类   3篇
农作物   1篇
植物保护   1篇
  2020年   2篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   4篇
  2012年   1篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   3篇
  2006年   5篇
  2005年   2篇
  2004年   1篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1998年   1篇
  1997年   2篇
  1994年   1篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   5篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1980年   4篇
  1979年   2篇
  1978年   1篇
  1963年   2篇
  1962年   1篇
  1959年   1篇
  1955年   2篇
排序方式: 共有90条查询结果,搜索用时 31 毫秒
31.
水稻田中碳铵和尿素的氮素损失的研究   总被引:3,自引:0,他引:3       下载免费PDF全文
碳铵和尿素是中国的主要氮肥品种。研究表明,施入稻田后其氮素损失可达30-7.0%。  相似文献   
32.
太湖地区稻季的氮素径流损失研究   总被引:12,自引:0,他引:12  
采用田间小区试验,连续三年研究了太湖地区稻季的氮素径流损失及影响因素,暴雨导致的田面水高度超过土面7 cm后通过管道流入径流收集池。结果表明:稻田氮素径流损失的主要形态是溶解态氮(DN),DN中的NH4 -N浓度基本低于NO3--N浓度,NH4 -N浓度受施氮水平的影响,而NO3--N浓度不受施氮水平的影响。稻田氮素的径流损失量为N 1.0~17.9 kg hm-2,占稻季施氮量的0.3%~5.8%。氮素径流损失量年际差异很大,在同一个稻季损失量随施氮量的增加而增加。氮素径流损失量与径流发生前田面水中氮浓度间的关系可用方程式y=ax b表示。通过调节施肥与暴雨的间隔时间、控制施氮量以及抬高田埂高度等措施,可以降低稻田氮素的径流损失风险。  相似文献   
33.
朱兆良 《土壤》1988,20(2):57-61
在制定作物施肥方案时,确定适宜的氮肥用量是最基本的一项任务。在高产地区,氨肥的施用量显著偏高,确定适宜的氮肥用量尤为重要〔1〕。  相似文献   
34.
水稻生长对土壤氮素矿化的影响   总被引:3,自引:0,他引:3  
蔡贵信  朱兆良 《土壤学报》1983,20(3):272-278
淹水条件下,土壤氮素的矿化是土壤有效积温的函数.用淹水密闭培养法,预测田间种稻下土壤氮素的矿化量和矿化过程时,其准确性受到许多因素的影响.为了明确水稻生长对土壤氮素矿化的影响程度,以及不同季别的水稻在这方面的异同,我们进行了下述试验.  相似文献   
35.
推荐氮肥适宜施用量的方法论刍议   总被引:70,自引:8,他引:70  
本文对推荐氮肥施用量的两种技术路线进行了讨论。根据80年代和20032~004年在太湖地区进行的氮肥施用量试验网的水稻和小麦田间试验结果,对区域平均适宜施氮量法的产量效益、经济效益和环境效益进行了初步评价,提出了以区域平均适宜施氮量作为宏观控制的基础,结合田块具体情况进行微调的推荐路线。  相似文献   
36.
不同种植年限水田与旱地土壤有机氮组分变化   总被引:7,自引:0,他引:7  
王晋  庄舜尧  朱兆良 《土壤学报》2014,51(2):286-294
在浙江慈溪地区,由于不同时期围海造田形成了具有长时间尺度序列的典型水稻土和旱地土壤,为研究长期的土壤氮素生物地球化学循环过程提供了很好的对象。本研究运用封管水解Bremner法测定了不同种植年限下土壤氨基酸氮、氨基糖氮、氨态氮、未知氮等酸解性有机氮组分,以探究不同种植年限和种植方式对土壤有机氮组分的影响。结果显示,旱地土壤的不同氮组分含量仅为水稻土相对应氮组分含量的50%~60%,水稻种植较旱地更利于土壤氮素的保存和利用。从长时间尺度来看,除氨基酸氮和水稻土氨基糖氮外,有机氮各组分含量随时间呈指数变化趋势,水稻土主要呈增加趋势,而旱地土壤则表现为降低趋势。该地区土壤氨基酸氮占全氮比例为23.5%~29.3%,氨基糖氮比例为6.0%~7.6%,氨态氮为21.0%~28.8%,未知氮为13.0%~21.1%,不同种植方式和种植年限对土壤主要有机氮组分所占全氮比例影响不大。  相似文献   
37.
太湖地区冬小麦季土壤氨挥发与一氧化氮排放研究   总被引:1,自引:0,他引:1  
采用密闭室连续抽气法和静态箱法同步研究了太湖地区冬小麦季田间小区试验中不同施氮处理的氨挥发与一氧化氮(NO)排放的规律。结果表明,麦季氨挥发主要发生在施肥后 7~10d,以基肥期挥发量最大,为NH3-N 0.49~9.36 kg/hm2,占整个麦季观测期间挥发量的60.4%~74.7 %;NO的排放则主要发生在施用基肥后的30d 内,量虽小但持续时间较长,排放速率为NO-N 0.009~0.304 mg/(m2.h),该时期总损失量为NO-N 0.68~1.23 kg/hm2,约占整个麦季观测期排放量的 93%。氨挥发和 NO 排放均随施氮量的增加而增加。各施氮处理麦季观测期的氨挥发总损失量为NH3-N 7.6~12.6 kg/hm2,损失率4.62%~5.26%;NO排放总量为NO-N 0.73~1.3 kg/hm2,损失率0.27%~0.41%。研究结果对综合评价太湖地区麦季氮肥的气态损失及其环境效应、指导合理施肥都具有重要意义。  相似文献   
38.
太湖地区高产高效措施下水稻氮淋溶和径流损失的研究   总被引:7,自引:0,他引:7  
张敏  赵淼  田玉华  尹斌  朱兆良 《土壤》2018,50(1):35-42
在太湖地区,采用田间小区试验,研究了高产高效措施对水稻季氮素淋溶和径流损失的影响。结果发现,水稻季总氮(TN)和可溶性有机氮(DON)淋溶随土壤深度的增加而降低,不同深度下氮淋溶形态不同。60 cm处DON浓度要高于硝氮(NO–3-N)和铵氮(NH4+-N),占TN的40.5%~58.9%;80 cm处NO–3-N的浓度要高于DON和NH4+-N,占TN的52.3%~60.7%。相比当地常规处理,高产高效处理的NO–3-N淋溶减少了51.7%~54.7%,仅占施肥的0.5%~0.9%。在氮的径流损失中,NH4+-N占TN的48.1%~56.4%,而NO–3-N占TN的36%~53%。试验中氮素通过径流途径的损失量很低,仅占施肥的0.34%~0.59%。高产高效处理的氮淋溶和径流损失之和分别为10.59 kg/hm2和10.18 kg/hm2,低于常规处理(13.41 kg/hm2)。除此之外,高产高效措施的作物产量(11.14~12.22 t/hm2)和农学利用率(11.8~12.5 kg/kg)均显著高于当地常规处理。水稻收获后,高产高效处理的土壤TN相比常规处理提高了6.8%~8.1%,有机质含量提高了8.6%~9.2%。综上,高产高效措施不仅有利于作物产量和氮素利用率的提高,还削弱了氮在土-水界面的迁移,是作物增产且环境友好型的有效措施。  相似文献   
39.
2D伺服阀基于螺旋伺服的原理将先导级和功率级集成在阀芯上,具有功率密度高和响应速度快的特点,其动态特性易受先导级节流口的影响。本文对弓形和矩形两种先导级结构的2D伺服阀动态特性及其结构参数对动态特性的影响进行研究。首先,阐述2D伺服阀的结构及工作原理,分别建立弓形和矩形先导级结构2D伺服阀的数学模型;然后,采用数值计算的方法对两种先导级结构2D伺服阀进行仿真分析,获得两者在不同结构参数(斜槽角β、先导级零位开口量h0)和不同工作压力ps下的阶跃响应特性;最后,搭建2D伺服阀的阶跃特性实验平台,获得弓形和矩形两种先导级结构2D伺服阀的阶跃特性实验曲线,并与仿真结果进行比较。结果表明,在相同结构参数(斜槽角β为82°、先导级零位开口量h_0为0. 02 mm)和20 MPa工作压力条件下,2D伺服阀采用矩形先导级结构将阀芯轴向位移对阀芯转角的阶跃响应时间,从弓形先导级结构的3. 4 ms缩短为1. 4 ms。将矩形先导级结构应用于以力矩马达作为电-机械转换器驱动阀芯旋转构成的2D电液伺服阀中,当阀芯轴向位移为0. 3 mm时,其阶跃响应时间为10 ms,基本满足2D电液伺服阀对响应速度的要求。  相似文献   
40.
提出了2D电液伺服流量阀设计方案,应用磁栅霍尔传感器检测比例旋转电磁铁的角位移,并与输入控制信号对比,形成角位移信号闭环反馈;采用变传动比拨杆拨叉驱动机构,结合2D控制技术将旋转电磁铁角位移比例转换为阀芯轴向位移,斜槽敏感通道形成位置闭环反馈,提高了其控制精度和抗污染能力。建立了该阀的数学模型,对整个系统进行了仿真分析,并设计样机,进行了实验研究,实验结果表明:当工作压力为35 MPa、阀芯行程为0.8 mm时,其频宽约为120 Hz,阶跃响应5 ms,6 mm通径阀流量达60 L/min,且其质量仅为同级别阀的1/3左右,适用于机载液压系统。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号