首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28245篇
  免费   978篇
  国内免费   2篇
林业   4631篇
农学   1704篇
基础科学   181篇
  5589篇
综合类   1453篇
农作物   2573篇
水产渔业   2677篇
畜牧兽医   6149篇
园艺   1329篇
植物保护   2939篇
  2023年   137篇
  2022年   150篇
  2021年   301篇
  2020年   299篇
  2019年   216篇
  2018年   3118篇
  2017年   3069篇
  2016年   1678篇
  2015年   515篇
  2014年   546篇
  2013年   815篇
  2012年   1768篇
  2011年   2925篇
  2010年   2483篇
  2009年   1570篇
  2008年   2027篇
  2007年   2241篇
  2006年   647篇
  2005年   723篇
  2004年   662篇
  2003年   678篇
  2002年   484篇
  2001年   300篇
  2000年   293篇
  1999年   224篇
  1998年   69篇
  1997年   61篇
  1996年   50篇
  1995年   63篇
  1994年   38篇
  1993年   47篇
  1992年   91篇
  1991年   69篇
  1990年   65篇
  1989年   65篇
  1988年   64篇
  1987年   47篇
  1986年   47篇
  1985年   47篇
  1984年   43篇
  1983年   36篇
  1979年   36篇
  1974年   29篇
  1973年   21篇
  1972年   23篇
  1971年   23篇
  1970年   27篇
  1969年   26篇
  1968年   29篇
  1967年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Environmental conditions influence phenology and physiological processes of plants. It is common for maize and sorghum to be sown at two different periods: the first cropping (spring/summer) and the second cropping (autumn/winter). The phenological cycle of these crops varies greatly according to the planting season, and it is necessary to characterize the growth and development to facilitate the selection of the species best adapted to the environment. The aim of this study was to characterize phenological phases and physiological parameters in sorghum and maize plants as a function of environmental conditions from the first cropping and second cropping periods. Two parallel experiments were conducted with both crops. The phenological characterization was based on growth analyses (plant height, leaf area and photoassimilate partitioning) and gas exchange evaluations (net assimilation rate, stomatal conductance, transpiration and water-use efficiency). It was found that the vegetative stage (VS) for sorghum and maize plants was 7 and 21 days, respectively, longer when cultivated during the second cropping. In the first cropping, the plants were taller than in the second cropping, regardless of the crop. The stomatal conductance of sorghum plants fluctuated in the second cropping during the development period, while maize plants showed decreasing linear behaviour. Water-use efficiency in sorghum plants was higher during the second cropping compared with the first cropping. In maize plants, in the second cropping, the water-use efficiency showed a slight variation in relation to the first cropping. It was concluded that the environmental conditions as degree-days, temperature, photoperiod and pluvial precipitation influence the phenology and physiology of both crops during the first and the second cropping periods, specifically cycle duration, plant height, leaf area, net assimilation rate, stomatal conductance and water-use efficiency, indicating that both crops respond differentially to environmental changes during the growing season.  相似文献   
12.
New Forests - Native trees from the Caribbean were tested for seed desiccation responses, by adapting the “100-seed test” protocol. Ninety-seven seed lots of 91 species were collected...  相似文献   
13.
Journal of Crop Science and Biotechnology - The cultivation of sweet corn is expanding in Brazil, but there are serious constraints about the availability of commercial cultivars. The selection of...  相似文献   
14.
Landscape Ecology - Forest landscapes at the boreal–temperate ecotone have been extensively altered. Reducing the gap between current and presettlement forest conditions through...  相似文献   
15.
The complex nature of spinal cord injuries has provided much inspiration for the design of novel biomaterials and scaffolds which are capable of stimulating neural tissue repair strategies. Recently, conductive polymers have gained much attention for improving the nerve regeneration. In our previous study, a three-dimensional (3D) structure with reliable performance was achieved for electrospun scaffolds. The main purpose in the current study is formation of electrical excitable 3D scaffolds by appending polyaniline (PANI) to biocompatible polymers. In this paper, an attempt was made to develop conductive nanofibrous scaffolds, which can simultaneously present both electrical and topographical cues to cells. By using a proper 3D structure, two kinds of conductive scaffolds are compared with a non-conductive scaffold. The 3D nanofibrous core-sheath scaffolds, which are conductive, were prepared with nanorough sheath and aligned core. Two different sheath polymers, including poly(lactic-co-glycolic acid) PLGA and PLGA/PANI, with identical PCL/PANI cores were fabricated. Nanofibers of PCL and PLGA blends with PANI have fiber diameters of 234±60.8 nm and 770±166.6 nm, and conductivity of 3.17×10-5 S/cm and 4.29×10-5 S/cm, respectively. The cell proliferation evaluation of nerve cells on these two conductive scaffolds and previous non-conductive scaffolds (PLGA) indicate that the first conductive scaffold (PCL/ PANI-PLGA) could be more effective for nerve tissue regeneration. Locomotor scores of grafted animals by developed scaffolds showed significant performance of non-conductive 3D scaffolds. Moreover, the animal studies indicated the ability of two new types of conductive scaffolds as spinal cord regeneration candidates.  相似文献   
16.
New Forests - Adventitious rooting (AR) is an obligatory step for vegetative propagation of commercial woody species. Paper industries have interest in Eucalyptus globulus Labill and its hybrids...  相似文献   
17.
Improper application of nitrogen (N) has led to high N losses and low N use efficiency in the lower reaches of Yangtze River in China. An effective method to solve such problems is the deep fertilized N in root zone (RZF). Limited information is available on the effect of RZF on the uptake of macronutrients (N, P and K) and rice yield. Field experiments, conducted from 2014 to 2015, compared the farmer fertilizer practice (FFP, with 225 kg ha?1 of N, split into three doses) and RZF using the same rate but placing N 5 cm away from rice roots in holes 10 cm deep (RZF10) or 5 cm deep (RZF5) as a single application. The highest mean yield (10.0 t ha?1) was obtained in RZF10, which was 19.5% more than that in FFP. Root zone fertilization of urea (whether 10 cm deep or 5 cm deep) resulted in greater accumulation of N, P and K in stem, leaf sheaths, leaf blades and grains compared to that in FFP in sandy and in loam soils. The uptake of N, P and K was the highest in RZF10 (average at 176.7, 66.2 and 179.1 kg ha?1, respectively), higher than that in FFP by 45.0, 17.0 and 22.6%, respectively. N apparent recovery efficiency was markedly higher in RZF10 (53.1%) than in FFP (27.5%). RZF10 significantly increased the N, P, K uptake compared with FFP under different N rates in both sandy and loam soils. These results suggest that the N, P and K input amount should be re-determined under RZF.  相似文献   
18.
The use of cattle manure (CM) for fertilization presents challenges for optimizing nitrogen (N) use. Our work aimed to assess N efficiencies, in a 6‐year experiment with three biennial rotations of four crops: oat–sorghum (first year) and ryegrass–maize (second year) in a rainfed humid Mediterranean area of Spain. Fertilization treatments included the following: control (no N), 250 kg mineral N ha?1 year?1 (250MN), three CM rates (supplying 170, 250 and 500 kg N ha?1 year?1) and four treatments where the two lowest CM rates were complemented with either 80 or 160 kg mineral N ha?1 year?1. Treatments were distributed randomly in each of three blocks. Maximum dry‐matter yield (~44–49 t ha?1 rotation?1) was achieved in the third rotation, and only the control and the 170CM yielded significantly less. Within the limitations of the EU Nitrate Directive, the N steady state supply of 170CM always requires a complement of mineral N (80 kg N ha?1) to maximize N agronomic efficiency. The maximum N‐fertilizer replacement value (250CM vs. 250MN) was 0·67, without significant differences between the two treatments in other N‐related efficiency indexes, which indicates that plants took advantage of residual‐N effects. Nitrogen losses by leaching in the 250CM treatment were around 5–7% of the N applied. This reinforces the sustainability of manure recycling in long cropping seasons.  相似文献   
19.
20.
The aim of the work was to study the influence of particle size in the composition, physicochemical, techno-functional and physio-functional properties of two flours obtained from persimmon (Diospyros kaki Trumb. cvs. ‘Rojo Brillante’ (RBF) and ‘Triump’ (THF) coproducts. The cultivar (RBF and THF) and particle size significantly affected all parameters under study, although depending on the evaluated property, only one of these effects predominated. Carbohydrates (38.07–46.98 g/100 g) and total dietary fiber (32.07–43.57 g/100 g) were the main components in both flours (RBF and THF). Furthermore, insoluble dietary fiber represented more than 68% of total dietary fiber content. All color properties studied were influenced by cultivar and particle size. For both cultivars, the lower particle size, the higher lightness and hue values. RBF flours showed high values for emulsifying activity (69.33–74.00 mL/mL), while THF presented high values for water holding capacity (WHC: 9.47–12.19 g water/g sample). The bile holding capacity (BHC) and fat/oil binding values were, in general, higher in RBF (19.61–12.19 g bile/g sample and 11.98–9.07, respectively) than THF (16.12–12.40 g bile/g sample and 9.78–7.96, respectively). The effect of particle size was really evident in both WHC and BHC. Due to their dietary fiber content, techno-functional and physio-functional properties, persimmon flours seem to have a good profile to be used as potential functional ingredient.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号