首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
2.
Serum antibody responses and haemolytic complement activity were evaluated in White Leghorn (WLH) and Rhode Island Red (RIR) chickens that were vaccinated with live-attenuated vaccines of Newcastle disease virus, or infectious bronchitis virus, or infectious bursal disease virus by means of ocular challenge at 10 times the normal vaccination dose. Complement titres in non-vaccinated birds were significantly higher in WLH birds compared to RIR birds. The lentogenic viral infection resulted in an immediate stimulation of complement activity, followed by a decrease to initial complement levels within 2 weeks post vaccination, when the antibody response took over immune defence. As compared to WLH chickens, RIR birds mounted a faster and significantly higher antibody response to the vaccine viruses used. In WLH hens, significantly higher haemolytic complement activity post vaccination was found as compared to RIR hens. Possible consequences of the observed differences in immune responsiveness of the two breeds to viral vaccines are discussed.  相似文献   

3.
SUMMARY: Australian lentogenic Newcastle disease viruses were evaluated as uninactivated vaccines in Australian chickens, the response being evaluated by the production of haemagglutination-inhibition (HI) antibodies. Two viruses, V4 and PM9, induced high levels of antibody and were readily transmissible between chickens by contact exposure. Three other viruses were poorly immunogenic and poorly transmissible. Chickens vaccinated intramuscularly with the V4 strain produced higher HI antibody titres than chickens vaccinated by the orotracheal, intranasal and intraocular routes. HI antibody titres in chickens vaccinated with the V4 strain reached peak levels 3 to 5 weeks after vaccination and waned considerably during the next 2 to 4 weeks. However, low levels of HI antibody persisted for at least 36 weeks after vaccination. Intramuscular vaccination with the V4 strain of one-day-old chicks lacking maternal antibody to Newcastle disease virus resulted in 42–70% mortality and the survivors developed very high titres of HI antibody. Similar chickens inoculated orotracheally showed signs of depression and developed high titres of HI antibody, but there were no mortalities. Chickens 1-, 2-, 3- and 4-weeks-old and lacking maternally derived HI antibody to Newcastle disease virus suffered no adverse reaction to intramuscular or orotracheal vaccination. The antibody response of the 1-week-old chickens was considerably poorer than that of the older chickens. Following orotracheal vaccination with the V4 strain, chickens with low levels of maternally derived antibody responded with low levels of HI antibody. On the other hand, in the progeny of hens hyperimmunised with the V4 strain the production of active antibody following orotracheal vaccination was delayed until the level of passive antibody had declined considerably. There was no response to intramuscular vaccination in congenitally hyperimmune chickens. The minimum HI antibody inducing dose of V4 vaccine, when measured 3 weeks after vaccination of 6-weeks-old chickens, was 105.6 50% egg infectious doses.  相似文献   

4.
Infectious bronchitis (IB) is an acute and highly contagious viral respiratory disease of chickens. To understand the kinetics and relationships between the humoral (Ab) and antigen specific T cell immunity as well as pathological changes during infectious bronchitis virus (IBV) infection and immunization, one-week-old SPF chickens were vaccinated with live IBV H52 strain and challenged with IBV M41 15 days post primary infection. Chickens were sacrificed every 3 days to monitor antigen specific serum IgG and IBV nucleoprotein-specific immune responses using a chicken MHC I tetramer developed in our laboratory. The results demonstrated that T cell responses developed more rapidly than the humoral (Ab) immune response after vaccination with H52. However, serum IgG dramatically increased after M41 challenge. Chickens from the control, non-vaccinated group developed severe respiratory symptoms and demonstrated significant pathological changes in lung, kidney and bursa of Fabricius post challenge with M41. However, chickens vaccinated with H52 did not demonstrate clinical signs or histological changes post challenge with M41. These results indicated that the live IBV H52 inoculation effectively protected chickens from morbidity and pathological changes associated with IBV infection. These data facilitates the design of a new generation of IBV vaccine.  相似文献   

5.
Infectious bronchitis virus CA99 serotype was isolated from several broiler flocks in Northern California. The virus caused late-onset respiratory disease and increased airsacculitis condemnation in affected flocks despite the use of an established infectious bronchitis virus vaccination program. An experimental study compared Holland/Arkansas and Massachusetts/Arkansas vaccination protocols to determine the efficacy of commercial infectious bronchitis virus vaccines in reducing respiratory disease and airsacculitis lesions found at processing that were associated with a CA99 field isolate. All vaccination groups were given Massachusetts/Connecticut strains of infectious bronchitis virus vaccines at age 1 day followed by vaccination with either Holland/ Arkansas or Massachusetts/Arkansas vaccine strains at 18 days of age. Birds were challenged at age 31 days with a CA99 field isolate. Gross pathology, histopathology, and virus isolation were evaluated. Chickens vaccinated with Holland/Arkansas had marginally better protection against CA99 challenge than chickens vaccinated with Massachusetts/Arkansas, although differences were not statistically significant.  相似文献   

6.
The safety and efficacy of the cell-associated (C-A) vaccine prepared by chicken embryo fibroblast (CEF) cells infected with the tissue-culture-modified strain of infectious laryngotracheitis (ILT) virus were studied in chickens. Over seventy percent of chickens inoculated with the C-A vaccine by the subcutaneous (S.C.) or intramuscular (I.M.) route at 1 day of age was protected against challenge with a virulent strain of ILT virus without any clinical signs. Chickens vaccinated with the C-A vaccine at 1 day of age acquired immunity within 6 days after vaccination, and the protection rate maintained more than 60% until 10 weeks post-vaccination. The C-A vaccine was invariably effective for chickens at various age. There was no evidence that the development of immunity was hindered by further vaccination with Newcastle disease and infectious bronchitis combined live vaccine. In addition, the C-A vaccine was safe when chickens were inoculated with 10 doses. In the field trials of the C-A vaccine, no adverse reaction was observed, and over 65% of vaccinated chickens was protected against the challenge of the virulent ILT virus at 8 weeks after vaccination.  相似文献   

7.
Protection provided by live and inactivated virus vaccination against challenge with the virulent nephropathogenic infectious bronchitis virus (NIBV) strain PA/Wolgemuth/98 was assessed. Vaccinations with combinations of live attenuated strains Massachusetts (Mass) + Connecticut (Conn) or Mass + Arkansas (Ark) were given by eyedrop to 2-wk-old specific-pathogen-free leghorn chickens. After live infectious bronchitis virus (IBV) vaccination, some chickens at 6 wk of age received an injection of either an oil emulsion vaccine containing inactivated IBV strains Mass + Ark or an autogenous vaccine prepared from NIBV PA/Wolgemuth/98. Challenge with PA/Wolgemuth/98 was given via eyedrop at 10 wk of age. Serum IBV enzyme-linked immunosorbent assay antibody geometric mean titers (GMTs) after vaccination with the combinations of live attenuated strains were low, ranging from 184 to 1,354, prior to NIBV challenge at 10 wk of age. Both inactivated vaccines induced an anamnestic response of similar magnitudes with serum GMTs of 6,232-12,241. Assessment of protection following NIBV challenge was based on several criteria virus reisolation from trachea and kidney and renal microscopic pathology and IBV-specific antigen immunohistochemistry (IHC). Live attenuated virus vaccination alone with combinations of strains Mass + Conn or Mass + Ark did not protect the respiratory tract and kidney of chickens after PA/Wolgemuth/98 challenge. Chickens given a live combination vaccination of Mass + Conn and boosted with an inactivated Mass + Ark vaccine were also susceptible to NIBV challenge on the basis of virus isolation from trachea and kidney butshowed protection on the basis of renal microscopic pathology and IHC. Live IBV-primed chickens vaccinated with an autogenous inactivated PA/Wolgemuth/98 vaccine had the highest protection against homologous virulent NIBV challenge on the basis of virus isolation.  相似文献   

8.
Because it is expected to induce cross-reactive serum and mucosal antibody responses, mucosal vaccination against highly pathogenic avian influenza (HPAI) is potentially superior to conventional parenteral vaccination. Here, we tested whether intraocular vaccination with an inactivated AI virus induced protective antibody responses in chickens. Chickens were inoculated intraocularly twice with 104 hemagglutination units of an inactivated H5N1 HPAI virus. Four weeks after the second vaccination, the chickens were challenged with a lethal dose of the homologous H5N1 HPAI virus. Results showed that most of the vaccinated chickens mounted positive antibody responses. The median serum hemagglutination inhibition titer was 1:80. Addition of CpG oligodeoxynucleotide 2006 or cholera toxin to the vaccine did not enhance serum antibody titers. Cross-reactive anti-hemagglutinin IgG, but not IgA, was detected in oropharyngeal secretions. In accordance with these antibody results, most vaccinated chickens survived a lethal challenge with the H5N1 HPAI virus and did not shed the challenge virus in respiratory or digestive tract secretions. Our results show that intraocular vaccination with an inactivated AI virus induces not only systemic but also mucosal antibody responses and confers protection against HPAI in chickens.  相似文献   

9.
A lymphocyte transformation microassay was used to study cell mediated immunity (CMI) in chickens following primary and secondary vaccination with inactivated oil emulsion infectious bronchitis (IB) vaccine and subsequent challenge with Massachusetts-41 (M-41). Humoral immunity was monitored for comparison, using the haemagglutination inhibition (HI) microassay. Positive stimulation indices (2 to 2.7 after primary and 2 to 4.8 after secondary vaccination) were lower and HI titres were higher than those previously reported following primary and secondary vaccination with live IB vaccines. The highest HI titres appeared in birds which had received the inactivated vaccine as a secondary vaccination. Challenge of vaccinated and revaccinated birds resulted in strong HI and weak CMI secondary responses. There was no correlation between CMI and HI antibody production. Monitoring egg production and clinical signs showed that a high level of protection against challenge resulted from revaccination with an inactivated oil adjuvant vaccine.  相似文献   

10.
J M Sharma 《Avian diseases》1985,29(4):1155-1169
Studies with specific-pathogen-free chickens revealed that chicks hatching from eggs inoculated at the 18th day of embryonation with infectious bursal disease (IBD) vaccine viruses of low virulence (isolates TC-IBDV and BVM-IBDV) developed antibody against IBD virus (IBDV) and resisted challenge with virulent IBDV at 3 weeks of age or older. Embryo vaccination did not adversely affect hatchability of chicks or survival of hatched chicks. Chicks embryonally vaccinated with TC-IBDV had transient histologic lesions in the bursa of Fabricius at hatch. Similar but milder lesions were also noted in chickens that received TC-IBDV at hatch. The level of protection following embryo vaccination with TC-IBDV and BVM-IBDV was similar to that following vaccination with the same vaccines at hatch. Vaccine viruses of moderate virulence (isolates BV-IBDV and 2512-IBDV) were not suitable as vaccines in embryos lacking maternal antibody to IBDV, because the vaccinated chicks developed acute IBD after hatch. Isolate 2512-IBDV was not pathogenic for embryos bearing maternal antibody to IBDV. Maternal antibody against IBDV interfered with efficacy of embryo vaccination with BVM-IBDV but not with 2512-IBDV. Embryo vaccination with a mixture of vaccines against IBD and Marek's disease resulted in protection of hatched chicks against challenge with virulent IBDV and Marek's disease virus.  相似文献   

11.
Vaccination and challenge experiments using infectious bronchitis virus (IBV) were conducted on groups of specific-pathogen-free chickens. Three weeks post-vaccination with one of the four IBV strains used, chickens were challenged with the homologous immunizing strain of IBV. Subsequently, the chickens were sacrificed, their tracheas were examined for ciliostasis, and the specific IBV antibody content of their sera was measured by enzyme-linked immunosorbent assay (ELISA). Results showed that protection was conferred by primary vaccination, as ciliostasis was not observed in tracheas from groups vaccinated and then challenged. No protection was observed in control groups that received only a challenge exposure, and the virus was readily recovered from their tracheas. Homologous protection was present in chickens that had ELISA titers as low as 624 and neutralization indices as low as 2.9, whereas susceptible controls had titers of less than 100 and less than 1.0, respectively.  相似文献   

12.
疫苗的接触传播是疫苗免疫接种需要考虑的重要因素,为了检测重组鸡痘病毒载体疫苗水平传播的能力,对隔离条件下饲养的SPF鸡用重组鸡痘病毒基因工程疫苗接种,同时设立非免疫对照鸡,饲养期间特意延长清粪时间以增加感染的机会,1个月之后攻击传染性喉气管炎WG株强毒和鸡痘102株强毒,疫苗免疫鸡全部获得保护,而非免疫鸡则全部发病.在试验动物饲养场的自然条件下,将免疫鸡和试验对照两组鸡饲养在同一个鸡舍内,让疫苗毒的传播更接近自然条件.在每个月的攻毒试验中,对照鸡都没有获得对鸡痘和传染性喉气管炎强毒的保护.在疫苗免疫期间进行连续5个月的跟踪检测,同居未免疫鸡没有检测到抗传染性喉气管炎病毒gB抗体.这些实验结果表明抗鸡传染性喉气管炎重组鸡痘病毒基因工程疫苗不能通过接触传播.  相似文献   

13.
Chicks hatched with high levels of maternal antibody had excellent protection (>95%) against infectious bronchitis virus (IBV) challenge at 1 day of age, but not at 7 days (<30%). This protection significantly (P<0.05) correlated with levels of local respiratory antibody and not with serum antibody.A high percentage of both maternal antibody-positive (Mab+) and maternal antibody-negative (Mab-) chicks failed to produce IBV antibody when vaccinated at 1 day of age by the intraocular route. In addition, Mab+ chickens had a weaker virus-neutralizing antibody response to a second IBV vaccination compared to Mab- birds (P<0.05). Mab+ chicks experienced a more rapid decline (P<0.01) in maternal antibody after 1-day-of-age vaccination compared to their unvaccinated counterparts.A monoclonal antibody-based blocking ELISA that measured antibody levels specific to S1 glycoprotein of IBV correlated well with virus-neutralizing antibody titers.  相似文献   

14.
15.
The efficacy of green-coloured (GC) I-2 Newcastle disease vaccine was determined in the present study. I-2 vaccine was mixed with a green coloured dye and stored at 4°C for 6 months while assayed for the virus infectivity at a monthly interval. Chickens were vaccinated with the GC vaccine by eye drop. Serum samples were collected from all birds before and after vaccination at weekly interval for 4 weeks and tested for haemagglutination-inhibition (HI) antibody against Newcastle disease virus (NDV). These chickens were challenged with NDV virulent strain four weeks after vaccination. The results showed that there was no difference between the infectivity titres of GC and uncoloured vaccines. However, chickens vaccinated with GC vaccine produced higher HI antibody titres than chickens vaccinated with uncoloured vaccine. Results from the challenge trial showed that all vaccinated chickens survived whereas all unvaccinated chickens died. The findings from this study have shown that the GC vaccine is safe and produced protective antibodies against NDV in vaccinated chickens. Wambura, P. N., 2008. Protective antibody response produced by the chickens vaccinated with green coloured thermostable Newcastle disease virus. Tropical Animal Health and Production.  相似文献   

16.
The serological response and protective immunity elicited in the chicken by the pathogenic Ap3AS strain and the moderately pathogenic 80083 strain of Mycoplasma gallisepticum and variants of strain 80083 attenuated by repeated passage in mycoplasma broth were investigated. Strain 80083 elicited a substantial serum antibody response after administration either in drinking water or by conjunctival sac instillation to 7-week-old SPF chickens. No vaccinated chickens developed air sac lesions when challenged by intra-abdominal (IA) injection with the virulent Ap3AS strain. Chickens vaccinated with strain 80083M (50 broth passages) showed only a weak serological response but were substantially protected when challenged 4 weeks after vaccination. Chickens vaccinated with 80083H (100 broth passages) were serologically negative 4 weeks after vaccination and developed severe air sac lesions after challenge. Thirty-seven-week-old hens vaccinated 6 months previously with strain 80083 had high serum antibody levels and were completely protected against IA challenge with the homologous strain. However, 4/6 showed mild air sac lesions when challenged intra-abdominally with strain Ap3AS. Another group showed high M. gallisepticum serum antibody levels 6 months after vaccination with strain Ap3AS but 4/6 and 2/6 showed mild lesions after IA challenge with strains Ap3AS or 80083, respectively. Strains 80083 or 80083M were administered by conjunctival sac instillation to susceptible 11-week-old commercial pullets at the time of fowl pox vaccination. The concurrent use of both vaccines had no apparent adverse effect on the health of the chickens. Similar protection against IA challenge with strain Ap3AS was produced with the M. gallisepticum vaccines whether used alone or in combination with fowl pox.  相似文献   

17.
Antibody responses in indigenous village and commercial chickens vaccinated with 12 thermostable Newcastle disease (ND) vaccine and protection levels against challenge with a virulent field isolate were determined. The antibody response of village chickens vaccinated by eye drop revealed that 30, 60 and 90 days after primary vaccination, the mean log2 HI titres were 6.1, 5.4 and 3.6, respectively, whereas for commercial chickens, the antibody response after 14, 30 and 90 days were 8.2, 5.1 and 4.2, respectively. Village chickens vaccinated orally via drinking water had mean log2 HI titres of 3.4 after 30 days. After booster vaccination, the mean HI titre was 5.4 and 3.3 after 30 and 60 days post-secondary vaccination (i.e. 60 and 90 days after primary vaccination). Antibody response of mean log2 HI titres of 2.6 was recorded 30 days after primary vaccination orally through food; 30 and 60 days after secondary vaccination (i.e. 60 and 90 days after primary vaccination), mean log2 HI titres were 5.3 and 3.2, respectively. All commercial and village chickens vaccinated by eye drop survived the challenge trial whereas village chickens vaccinated through drinking water and food had protection levels of 80% and 60% 30 days after primary vaccination, respectively. However, 30 days after booster vaccination, the protection level was 100%. At 60 days after secondary vaccination, the protection level dropped again to 80% for chickens vaccinated orally. All control chickens used in the challenge trials developed clinical ND and died 3-5 days after inoculation with the virulent virus. Supported by laboratory findings, I2 strain of NDV seemed to be avirulent, immunogenic and highly protective against virulent isolates of NDV. It may be a suitable vaccine to use in village chickens to vaccinate them against ND in rural areas.  相似文献   

18.
Due to serotype variations among different avian infectious bronchitis viruses isolated in Tunisia since 2000, protection of chicks, especially broiler flocks, with Mass H120 vaccine often fails. Therefore, association of CR88 (793B type) with H120 vaccines was used for better response. Challenge experiments were then conducted to evaluate tracheal and renal cross-protection in chickens immunized via nasal and eye drops. Conferred protection was measured by clinical signs and macroscopic lesions observed, based on scores attributed according to their severities. The results showed a low protection conferred by H120 alone, as vaccination did not reduce tracheal and kidney lesions (70% scored as 3) after TN20/00 virus challenge, which also led to 10% mortality. Conversely, the challenge results indicated that the combination of the 2 strains (H120/CR88) allow high protection. Based on the results of the challenge experiments, a vaccination protocol coupling CR88 to H120 was applied for industrial broiler flocks. Clinical observations and serological results confirmed that association of heterologous serotypes (H120 and CR88 vaccines) increased the levels of protection against infectious bronchitis viruses compared with the H120 vaccine given alone.  相似文献   

19.
Outbreaks of infectious bovine rhinotracheitis (IBR) have recently been observed in vaccinated feedlot calves in Alberta a few months post-arrival. To investigate the cause of these outbreaks, lung and tracheal tissues were collected from calves that died of IBR during a post-arrival outbreak of disease. Bovine herpesvirus-1 (BHV-1), the causative agent of IBR, was isolated from 6 out of 15 tissues. Of these 6 isolates, 5 failed to react with a monoclonal antibody specific for one of the epitopes on glycoprotein D, one of the most important antigens of BHV-1. The ability of one of these mutant BHV-1 isolates to cause disease in calves vaccinated with a modified-live IBR vaccine was assessed in an experimental challenge study. After one vaccination, the majority of the calves developed humoral and cellular immune responses. Secondary vaccination resulted in a substantially enhanced level of immunity in all animals. Three months after the second vaccination, calves were either challenged with one of the mutant isolates or with a conventional challenge strain of BHV-1. Regardless of the type of virus used for challenge, vaccinated calves experienced significantly (P < 0.05) less weight loss and temperature rises, had lower nasal scores, and shed less virus than non-vaccinated animals. The only statistically significant (P < 0.05) difference between the 2 challenge viruses was the amount of virus shed, which was higher in non-vaccinated calves challenged with the mutant virus than in those challenged with the conventional virus. These data show that calves vaccinated with a modified-live IBR vaccine are protected from challenge with either the mutant or the conventional virus.  相似文献   

20.
Coarse-spray (CS) administration of a commercial S1133 reovirus vaccine in chickens for prevention of clinical viral tenosynovitis (VT) infection was evaluated. In Expt. 1, one-day-old specific-pathogen-free (SPF) white leghorns were vaccinated with a combination of reovirus, Newcastle disease (ND), and infectious bronchitis (IB) vaccines by CS and infectious bursal disease vaccine by the subcutaneous (SQ) route. In Expt. 2, one-day-old commercial broilers were vaccinated by CS with reovirus vaccine and Marek's disease (MD) vaccine by SQ. In Expt. 3, one-day-old commercial broilers received reovirus vaccine in combination with ND-IB vaccines at 1 day of age by CS and MD vaccine by SQ. Some birds received an initial or second vaccination at 7 days of age by CS or the drinking-water (DW) route. Birds vaccinated by CS at 1 day of age with reovirus vaccine did not produce circulating virus-neutralizing antibody against reovirus, although they had resistance to VT infection. In contrast, initial or booster vaccination at 7 days of age by CS or DW resulted in an antibody response and greater resistance to challenge than did CS vaccination at 1 day of age. There was no difference in efficacy between CS and DW routes at 7 days of age. The reovirus vaccine did not interfere with other vaccines as measured by serologic (ND-IB-IBD) or challenge (MD) studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号