首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
本研究旨在探讨桑叶蛋白血管紧张素转换酶(ACE)抑制肽的酶解制备方法,从木瓜蛋白酶、中性蛋白酶、胃蛋白酶、芽孢杆菌蛋白酶、碱性蛋白酶、胰蛋白酶6种蛋白酶中筛选出最佳蛋白酶,并运用单因素逐级优化法对酶解反应的底物浓度、加酶量、温度、pH、酶解时间进行参数优化.选取这6种常用蛋白酶,利用酶解法制备桑叶蛋白多肽,以ACE抑制率为主要指标,水解度为辅助指标,研究桑叶多肽对ACE抑制活性的影响.结果 表明,酶解效果最佳的酶为芽孢杆菌蛋白酶,最佳酶解参数为底物质量浓度20 g/L、加酶量7.5%、温度60℃、pH7.0和酶解时间50 min,此时酶解产物的ACE抑制率为81.51%,水解度为15.86%.  相似文献   

2.
酶解蚕蛹蛋白制备血管紧张素转换酶抑制肽的工艺优化   总被引:2,自引:0,他引:2  
采用碱性蛋白酶水解蚕蛹蛋白,制备血管紧张素转换酶(angiotensin-converting enzyme,ACE)抑制肽,是蚕蛹蛋白深度开发的途径之一。以ACE抑制率为响应值,用响应面分析法研究酶解温度、酶解pH和加酶量等因素对酶解产物的ACE抑制活性的影响,优化制备工艺。结果表明,各因素对制备ACE抑制肽的活性影响程度由大到小依次为酶解pH、酶解温度、加酶量。获得碱性蛋白酶水解蚕蛹蛋白制备ACE抑制肽的最佳工艺条件为:酶解温度50.8℃,酶解pH 9.0,加酶量3 500 U/g。在此条件下,蚕蛹蛋白酶解产物对ACE的理论抑制率最高可达96.67%,验证值为96.49%±1.75%,IC50值为0.102 mg/mL,预测模型可靠性高,可应用于蚕蛹ACE抑制肽的酶法制备。  相似文献   

3.
本文采用碱性蛋白酶酶解大米蛋白,研究了不同时间酶解产物的血管紧张素转化酶(ACE)抑制活性,大米蛋白水解度,酶解产物中蛋白质含量及多肽分子质量分布与酶解产物ACE抑制活性的关系。结果表明:大米蛋白的水解度在15 min内呈现线性增长,60 min后逐渐趋于平缓;75 min酶解产物的ACE抑制率最高(63.27%),但与60、90 min的ACE抑制率无显著差异(P0.05);酸溶蛋白和总蛋白含量随着酶解时间的延长,均呈现上升的趋势;多肽分子质量分布在200~1000 Da的比例最高。  相似文献   

4.
对新疆双峰驼乳酪蛋白分别进行胃蛋白酶和胰蛋白酶的单酶和双酶联合水解,用反相高效液相色谱外标法,对产生的马尿酸含量进行检测,测定水解产物血管紧张素转化酶(angiotensin converting enzyme,ACE)抑制活性。通过米式方程对比水解产物与卡托普利之间的竞争关系,并用50、10、3 kDa的超滤膜对水解液进行超滤,测定截留液ACE抑制活性。结果表明:驼乳酪蛋白单酶水解12 h过程中,胰蛋白酶水解4 h,水解度达到3.7%,胃蛋白酶水解4 h,水解度达到16.58%,胰蛋白酶水解2 h,水解  相似文献   

5.
以乳清蛋白为原料,酶解制备具有抗菌能力的生物活性肽。采用超滤、葡聚糖凝胶层析色谱、反相高效液相色谱法对酶解液进行分离纯化,并对分离产物的氨基酸组成进行分析。结果表明:葡聚糖凝胶色谱纯化最佳流速2 mL/min,最佳样品质量浓度15 mg/mL;再由反相高效液相色谱分离的高活性抗菌肽,抑菌圈直径达到31.33 mm。氨基酸分析结果显示,高活性抗菌肽碱性氨基酸和疏水性氨基酸含量最多,分别为42.69%和37.39%。  相似文献   

6.
《饲料工业》2019,(16):29-34
为了充分合理利用海鱼下脚料鱼皮,并减少环境污染,本实验改变传统的酸碱处理法,采用生物酶解法,将海鱼皮酶解成小分子肽,为制备胶原蛋白、明胶等产品做指导。选用蛋白酶作为酶解实验用酶制剂,主要有碱性蛋白酶、中性蛋白酶、木瓜蛋白酶及其复合酶制剂,通过不同添加量比较常用指标,包括:水解度、酸溶蛋白、肽分子量的分布。结果表明,随着碱性蛋白酶添加量的增大,水解度、酸溶蛋白、肽分子量变化不明显;中性蛋白酶酶解几种指标中肽分子量分布有少许差异;木瓜蛋白酶酶解之后都是平均分子量≤1 000 Da的肽;复合酶制剂酶解之后分子量≤3 000 Da的肽占85%。本实验选取的四组酶制剂配方,其水解度都达到80%以上,碱性蛋白酶达到85%以上;酸溶蛋白的含量均在2.0%左右,差异不明显。相同成本条件下,从分子量分布来看,木瓜蛋白酶的效果最好,其次是碱性蛋白酶,再其次是中性蛋白酶,复合酶制剂效果最差。  相似文献   

7.
本文通过正交试验,选用碱性微生物蛋白酶,研究得出酶解法制备大豆肽的最佳工艺参数:豆粕预处理条件为90℃水浴加热10min,酶解条件为底物浓度5%(W/V)、加酶量5万单位/g蛋白质、温度50℃、pH值10、酶解时间5.5h。蛋白质水解率达到25%,平均肽链长度为4.0。制得大豆肽粗蛋白质含量66.83%(DM)。并对制得大豆肽和原料豆粕的氨基酸含量进行分析。  相似文献   

8.
利用蛋白酶对脱脂柞蚕蛹蛋白进行酶解制备具有活性的多肽,可以提高柞蚕蛹蛋白的应用价值。为了建立适合工业化应用的脱脂柞蚕蛹蛋白的酶解工艺条件,首先采用单因素试验考察料液质量浓度、复合中性蛋白酶种类与使用浓度、酶解温度和时间4个因素对脱脂柞蚕蛹蛋白水解度的影响,得出较适合的工艺条件是:料液质量浓度60 g/L,3 g/L复合中性蛋白酶中的风味蛋白酶与蚕蛹专用复配蛋白酶按1∶1质量比混合,酶解温度55℃,酶解时间10 h。进一步采用Box-Behnken设计及响应面分析法对工艺条件进行优化,在复合中性蛋白酶质量浓度4.85 g/L、料液质量浓度41 g/L、酶解温度55℃、酶解时间10.66 h的最佳酶解条件下,脱脂柞蚕蛹蛋白的理论水解度为45.82%,实际水解度为45.75%。利用优化的酶解工艺条件制备柞蚕蛹蛋白活性肽,具有酶解效率高、稳定性好、操作简单、生产成本低的特点。  相似文献   

9.
前期研究提取了大鲵皮明胶,将其酶解后制备生物活性肽,为了进一步拓展其在工业中的应用,试验以木瓜蛋白酶为工具酶,通过单因素试验和正交试验优化确定大鲵皮明胶水解工艺,并考察酶解肽分子质量分布、氨基酸组成和自由基清除活性。结果表明:木瓜蛋白酶对大鲵皮明胶水解最佳工艺为加酶量3 000 U/g、温度55℃、pH值7.5、酶解时间4 h,在此条件下,水解度可达26.79%。大鲵皮明胶肽中甘氨酸、脯氨酸、谷氨酸和丙氨酸含量相对较高,占总氨基酸的49.64%,分子质量分布范围主要集中在500~5 000 u,占总酶解产物的79.89%。大鲵皮明胶肽对DPPH自由基具有一定清除能力,其清除率达到50%,所对应的样品浓度(IC50)为6.99 mg/mL。说明该条件下制备的大鲵皮明胶肽可作为潜在的抗氧化肽。  相似文献   

10.
本试验以卵转铁蛋白为原料,利用胃蛋白酶酶解技术制备抗菌活性肽,优化实验条件,确定分子量范围。结果表明,胃蛋白酶酶解卵转铁蛋白制备抗菌肽在温度为40℃,pH值为2.0,底物浓度为4%,酶的加入量为1%,水解时间为2 h时,抑菌率达到90.36%;通过正交试验得出底物浓度及酶与底物浓度比对抑菌率的影响显著性水平达到0.05。并对在最优条件下得到的抗菌活性肽进行HPLC分析,确定相对分子质量范围主要在5 000~9 000之间。  相似文献   

11.
In order to produce angiotensin I‐converting enzyme (ACE) inhibitor for application in functional food, chicken bones were gathered from a meat processing factory and then hydrolyzed with Alcalase, pepsin and trypsin for 12 h. The hydrolysates were lyophilized, stored at ?80°C and tested experimentally every 2 h for pH value, peptide content, degree of hydrolysis (DH), electrophoresis and activity of ACE inhibitor. The hydrolysates of Alcalase had the highest peptide content and DH. The components of more than 66 kDa had disappeared in hydrolysates of Alcalase and trypsin after 2 h of hydrolysis. The hydrolysates of Alcalase were more active in inhibiting ACE, especially when hydrolyzed at 4 and 8 h, and also had low IC50 values of 1.960 and 0.945 mg/mL. According to the results of DH and electrophoresis, the higher activity of ACE inhibitor is assumed to be derived from the low molecular peptides in hydrolysates of Alcalase. Chicken leg bone has a high potential to be utilized to develop ACE inhibitory peptides as a potential ingredient of functional food intended to alleviate hypertension.  相似文献   

12.
To search for a novel angiotensin I‐converting enzyme (ACE) inhibitory peptide, porcine skeletal troponin was hydrolyzed with pepsin. This hydrolysate showed ACE inhibitory activity, and was applied to various kinds of chromatography to separate an active peptide. Analysis using a protein sequencer identified this peptide as RMLGQTPTK (9mer). This sequence was estimated to occur at the 44–52 position of troponin C, and its 50% inhibitory protein concentration (IC50) was 34 µM. RMLGQTP (7mer), a partial peptide of 9mer, showed activity with an IC50 of 503 µM. RP‐HPLC analysis of a reaction mixture of 9mer and ACE showed that 9mer was slowly hydrolyzed by ACE. On the other hand, 7mer was rapidly hydrolyzed by ACE. Activity of 9mer was reduced as its hydrolysis by ACE proceeded. To estimate the resistance of 9mer to digestive proteases after oral administration, it was reacted with pepsin, α‐chymotrypsin, or trypsin. In each of these reaction mixtures, a significant amount of 9mer remained as a substrate after digestion. Remaining ACE inhibitory activity was close to that of 9mer. These results suggest that 9mer might not be digested after oral administration, because of its relatively high resistance to digestive proteases. Therefore, 9mer might be expected to work well in vivo as an ACE inhibitor.  相似文献   

13.
This study aims to identify peptides with angiotensin-I converting enzyme (ACE) inhibitory activity in hydrolysate from chicken leg bone protein hydrolyzed with alcalase for 4 h (A4H). The hydrolysate has demonstrated potent in vitro ACE inhibitory activity, and has been shown to attenuate the development of hypertension and cardiovascular hypertrophy in spontaneously hypertensive rats (SHR). A4H is competitive for ACE and was separated using high-performance liquid chromatography (HPLC) with a gel filtration column (Superdex Peptide HR 10/30). The results show that A4H is a mixed non-competitive inhibitor. Eighteen fractions were detected after separation of A4H, and most of them showed ACE inhibitory activity. Five fractions with strong ACE inhibitory activities (above 50%) were labeled from A to E. In addition, there were 10 peptides, consisting of 5–10 amino acid residues that were identified from fraction D that exhibited the strongest ACE inhibitory activity. Three of the identified peptides corresponded to peptides derived from collagen type I and chicken muscular protein. It is revealed that A4H has several peptides that possess ACE inhibitory activities.  相似文献   

14.
研究乳酸菌发酵血管紧张素转换酶抑制肽对其功能特性的影响。结果表明:血管紧张素转换酶抑制肽经乳酸菌发酵后提高了血管紧张素转换酶抑制活性,其中以鼠李糖乳杆菌发酵后的活性最高,为97.83%;血管紧张素转换酶抑制肽对乳酸菌的生长有促进作用,以双歧杆菌活菌数量提高最大,鼠李糖乳杆菌次之;乳酸菌对致病性大肠杆菌有明显的抑制作用,血管紧张素转换酶抑制肽经乳酸菌发酵后对致病性大肠杆菌的抑制作用优于发酵乳,以鼠李糖乳杆菌的抑制作用最强,其抑菌圈直径高达24mm。  相似文献   

15.
The purposes of this research were to use fig protease for texture tenderizing, and to inhibit angiotensin I‐converting enzyme (ACE) action and γ‐aminobutyric acid (GABA) formation of meat. Liberated peptides by the enzymatic action of fig protease in processing meat and free amino acids were determined and ACE inhibitory activity was assayed. Meat treated with fig protease became tender as indicated by shear force value (SFV) which was half of those of non‐fig treated meat during storage even at 5°C. Liberated peptides, free amino acids and GABA increased while extremely low levels of Glu were detected after storage. The optimal temperature of fig protease against meat was 80°C. However, the activity of fig protease decreased after pre‐heating more than 40°C. High ACE inhibitory activity of a mixture of fig and meat was found around 80°C, and the value corresponded to the amount of liberated peptide. A lot of liberated peptides were found at 60–80°C and pasterization of meat product becomes convenient to produce peptides. Production of ACE inhibitory peptides and GABA can be expected as the healthy functional meat product such as antihypertensive activity and improve brain function.  相似文献   

16.
A novel angiotensin‐converting enzyme (ACE) inhibitory peptide was isolated and purified from chicken bone extract by enzymatic digestion. The peptide was defined as an ACE inhibitor, and it demonstrated antihypertensive activity following oral administration to spontaneously hypertensive rats (SHRs). The results of this study suggest that peptides derived from an extract of chicken bones, administered orally, have the ability to reduce the blood pressure of SHRs significantly over a short period of time (3 h). Moreover, the blood pressure then remains low for 3 h. This peptide derived from chicken bones may therefore have great value as a short‐term remedy for chronic conditions such as high blood pressure. The amino acid sequence of the peptide was YYRA (Tyr‐Tyr‐Arg‐Ala), which was the origin of the Ig heavy chain V region (27–30 position). The IC50 value of its synthetic peptide was 33.9 μg/mL. We suggest that the ACE inhibitory and antihypertensive peptides derived from chicken bone extract may contribute to develop physiologically functional foods or improve food functionality.  相似文献   

17.
以牦牛乳酪蛋白为原料,利用碱性蛋白酶、木瓜蛋白酶和胰蛋白酶制备酪蛋白酶解产物,研究其二肽基肽酶-Ⅳ(dipeptidyl peptidase-Ⅳ,DPP-Ⅳ)抑制活性和理化特性.以DPP-Ⅳ抑制率为指标,研究水解时间和蛋白酶的种类对酶解产物DPP-Ⅳ抑制活性的影响,以水解度、三氯乙酸氮溶解指数(trichloroacetic acid-nitrogen soluble index,TCA-NSI)、溶解性和灰分含量为指标,评价酶解产物的理化特性.结果表明:对于相同水解时间点获得的酶解产物,木瓜蛋白酶酶解产物的DPP-Ⅳ抑制活性显著高于其他2种蛋白酶的酶解产物(P<0.05).利用木瓜蛋白酶水解0.50 h的酶解产物具有最高的DPP-Ⅳ抑制活性(抑制率可达(53.95±1.57)%)、较高的水解程度以及最低的灰分含量.说明利用蛋白酶水解技术能够使牦牛乳酪蛋白中具有DPP-Ⅳ抑制活性的多肽释放,木瓜蛋白酶酶解产物可作为功能性乳基料用于功能性食品的开发.  相似文献   

18.
鸭血球短肽的优化制备及其特性研究   总被引:2,自引:0,他引:2  
本试验旨在筛选水解效率高且脱色效果好的商业蛋白酶,建立血球短肽的优化工艺,比较其在酶解前后营养特性的变化,研究其功能特性与体外抗氧化能力,以研发功能性血球短肽产品,为家禽血液资源高值化的转化利用与深度挖掘提供理论依据与技术借鉴。比较酶种类、酶浓度、温度、p H、水解时间等因素对蛋白酶水解度(DH)、脱色程度、水解物产量的影响,采用正交试验设计优化血球短肽的最佳工艺,对血球短肽进行营养价值、功能特性及抗氧化性能评价。确定酸性蛋白酶为最佳水解酶,其水解鸭血球蛋白制备短肽的最优工艺参数为:酶用量6 000 U/g,温度50℃,p H 3.5,水解时间7.0 h。在此条件下,水解度为(25.10±0.65)%,水解物产量为(60.09±1.77)%。通过高效液相色谱分析水解产物分子质量分布。结果表明,酶解对血球蛋白有明显的降解作用,酶解产物主要以3 ku以下的短肽为主,其中1 ku以下占大部分(62.82%)。血球短肽粉呈乳白色,氨基酸种类齐全,必需氨基酸含量丰富(53.31%),鸭血球蛋白酶解后的溶解性大大提高(60%),且具有良好的乳化稳定性。血球短肽清除自由基能力较强,随血球蛋白浓度的提升,清除1,1-二苯基-2-苦基肼自由基(DPPH·)与超氧阴离子能力随之愈强,还原力也逐渐增加。由此可见,酸性蛋白酶可有效水解鸭血球蛋白获得氨基酸含量丰富、溶解性好且具有抗氧化活性的乳白色血球短肽,可以作为功能性原料应用于食品与饲料中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号