首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 127 毫秒
1.
Inadequate delivery of nutrients results in intrauterine growth restriction(IUGR), which is a leading cause of neonatal morbidity and mortality in livestock. In ruminants, inadequate nutrition during pregnancy is often prevalent due to frequent utilization of exensive forage based grazing systems, making them highly susceptible to changes in nutrient quality and availability. Delivery of nutrients to the fetus is dependent on a number of critical factors including placental growth and development, utero-placental blood flow, nutrient availability, and placental metabolism and transport capacity. Previous findings from our laboratory and others, highlight essential roles for amino acids and their metabolites in supporting normal fetal growth and development, as well as the critical role for amino acid transporters in nutrient delivery to the fetus. The focus of this review will be on the role of maternal nutrition on placental form and function as a regulator of fetal development in ruminants.  相似文献   

2.
哺乳动物胎盘营养感应研究进展   总被引:1,自引:1,他引:0  
刘月帅  刘彦  曹忻  冯涛 《畜牧兽医学报》2022,53(5):1321-1333
妊娠期间母体营养的改变会影响胎儿的生长发育,而胎盘是母体-胎儿间进行气体、营养和代谢物交流的重要枢纽,哺乳动物胎盘营养感应系统响应母体和胎儿营养信号的变化,保证母体健康和胎儿生长发育。鉴于胎盘营养感应系统对哺乳动物繁育的重要性,本文从胎盘营养感应和胎盘养分分配方面综述了哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)、磷酸腺苷活化蛋白激酶(AMP-activated protein kinase,AMPK)、氨基己糖(Hexosamine)信号通路、糖原合成酶3(glycogen synthase kinase,GSK-3)、胰岛素/胰岛素样生长因子(insulin/insulin-like growth factor signaling pathway,IIS)等信号通路及其对妊娠期养分响应和对胎儿发育的影响,以期为哺乳动物的繁育提供参考依据。  相似文献   

3.
Prenatal growth is very complex and a highly integrated process. Both maternal nutrition and the maternal somatotropic axis play a significant role in coordinating nutrient partitioning and utilization between maternal, placental and fetal tissues. Maternal nutrition may alter the nutrient concentrations and in turn the expression of growth regulating factors such as IGFs and IGFBPs in the blood and tissues, while GH acts in parallel via changing IGFs/IGFBPs and nutrient availability. The similarity in the target components implies that maternal nutrition and the somatotropic axis are closely related to each other and may induce similar effects on placental and fetal growth. Severe restriction of nutrients throughout gestation has a permanent negative effect on fetal and postnatal growth, whereas the effects of both temporary restriction and feeding above requirements during gestation seem to be of transitional character. Advantages in fetal growth gained by maternal growth hormone treatment during early to mid-gestation are not maintained to term, whereas treatment during late or greatest part of gestation increases progeny size at birth, which could be of advantage for postnatal growth. This review summarizes the available knowledge on the effects of different maternal feeding strategies and maternal GH administration during pregnancy and their interactions on metabolic and hormonal (especially IGFs/IGFBPs) status in the feto-maternal unit, skeletal muscle development and growth of the offspring in pigs.  相似文献   

4.
Intrauterine growth retardation (IUGR), defined as impaired growth and development of the mammalian embryo/fetus or its organs during pregnancy, is a major concern in domestic animal production. Fetal growth restriction reduces neonatal survival, has a permanent stunting effect on postnatal growth and the efficiency of feed/forage utilization in offspring, negatively affects whole body composition and meat quality, and impairs long-term health and athletic performance. Knowledge of the underlying mechanisms has important implications for the prevention of IUGR and is crucial for enhancing the efficiency of livestock production and animal health. Fetal growth within the uterus is a complex biological event influenced by genetic, epigenetic, and environmental factors, as well as maternal maturity. These factors impact on the size and functional capacity of the placenta, uteroplacental blood flows, transfer of nutrients and oxygen from mother to fetus, conceptus nutrient availability, the endocrine milieu, and metabolic pathways. Alterations in fetal nutrition and endocrine status may result in developmental adaptations that permanently change the structure, physiology, metabolism, and postnatal growth of the offspring. Impaired placental syntheses of nitric oxide (a major vasodilator and angiogenic factor) and polyamines (key regulators of DNA and protein synthesis) may provide a unified explanation for the etiology of IUGR in response to maternal undernutrition and overnutrition. There is growing evidence that maternal nutritional status can alter the epigenetic state (stable alterations of gene expression through DNA methylation and histone modifications) of the fetal genome. This may provide a molecular mechanism for the role of maternal nutrition on fetal programming and genomic imprinting. Innovative interdisciplinary research in the areas of nutrition, reproductive physiology, and vascular biology will play an important role in designing the next generation of nutrient-balanced gestation diets and developing new tools for livestock management that will enhance the efficiency of animal production and improve animal well being.  相似文献   

5.
Human epidemiological observations and studies of experimental animals have shown that low birth weight is associated with adult phenotypes characterized by abnormalities in cardiovascular, metabolic, and endocrine function. In human populations, these changes can lead to overt degenerative diseases such as hypertension and type 2 diabetes. Because fetal growth depends primarily on the nutrient supply, the associations between birth weight and adult phenotype have been linked to poor nutrition in utero. The fetal supply of nutrients and oxygen depends on both the availability of these substances in the mother and the functional capacity of the placenta to supply them to the fetus. This review takes a comparative approach to examining the nutritional programming of adult physiological phenotype in mammals with emphasis on the horse where possible. It considers the role of maternal nutritional state and placental function in these processes and discusses the cellular and molecular mechanisms operating in utero that are responsible for the epigenetic regulation of phenotypical diversity.  相似文献   

6.
Remarkable diversity of size and health of offspring exists after normal pregnancies. When pregnancies are complicated by an extrinsic variable such as inappropriate maternal nutrition, birth weight and health of the neonate are substantially affected. The placenta is the organ through which respiratory gases, nutrients, and wastes are exchanged between the maternal and fetal systems. Thus, transplacental exchange provides for all the metabolic demands of fetal growth. Transplacental exchange is dependent upon uterine and umbilical blood flow, and blood flow rates are in turn dependent in large part upon vascularization of the placenta. Therefore, factors that influence placental vascular development will have a dramatic impact on fetal growth and development, and thereby on neonatal mortality and morbidity. Recent work from our laboratories has focused on the effects of nutrient intake during pregnancy on placental growth and vascular development. Both nutrient restriction of the adult dam and overnourishment of the adolescent dam during pregnancy suppress placental cell proliferation and vascularity. Furthermore, placental expression of angiogenic factors and their receptors, factors that are known to affect vascular growth, are perturbed by level of nutrition. Studies in this area will lead to improved methods to manage nutritionally-compromised pregnancies.  相似文献   

7.
幼龄阶段是反刍动物生长中非常重要的阶段,这一时期的营养供应、生长发育状况和瘤胃发育程度决定了其成年后的生产性能和繁殖效率。由于幼龄阶段消化代谢系统发育不完善且具有极强的可塑性,此阶段日粮的营养水平,尤其是蛋白质和中性洗涤纤维(NDF)水平,在反刍动物发育过程中发挥着非常重要的作用。在生产实践中,营养供给不足或超量供给都会影响幼畜的生长发育及健康状况,这种情况甚至会伴随其一生。而幼龄反刍动物日粮中蛋白质和纤维水平对生长性能和胃肠道发育的调节具有决定性的作用。适量提高日粮中蛋白质水平,可提高幼龄反刍动物的生长发育程度,并由于饲料中瘤胃微生物可利用氮浓度的提高而提高了营养物质消化率和瘤胃的发育。在保证精饲料充足的情况下,提高日粮中NDF水平可提高幼龄反刍动物开食料的采食量,提高生长性能和促进瘤胃发育,同时也伴随着营养物质消化率的提高。但由于试验动物或原料来源不同,在相关试验中仍存在不同的试验结果。为此,作者针对日粮中不同蛋白质和NDF水平对幼龄反刍动物生长发育、营养物质消化率和瘤胃发育的影响,以及出现不同试验结果的原因进行总结和探讨,以期为解决幼龄反刍动物的饲养管理问题、提高其饲养效率提供理论依据。  相似文献   

8.
REASONS FOR PERFORMING STUDY: There is a paucity of information on factors that influence placental development in the horse. Hypothesis: Changes in nutrition, particularly around the time of proliferative placental growth, can affect development of the placenta and fetal growth. OBJECTIVE: To investigate the effects of 2 planes of nutrition and an unforeseen infection-mediated nutritional insult on placental and fetal development in the mare. METHODS: Twenty maiden Thoroughbred fillies, age 3 or 4 years, mated to one Thoroughbred stallion, were maintained on either High or Moderate food intake throughout pregnancy. In mid-gestation all the mares unexpectedly became infected with Streptococcus equi and suffered varying degrees of weight loss as a consequence. Gross and stereological measurements of the placenta and measurements of foal birthweight, crown-rump length, ponderal index and plasma IGF-1 concentration were made at term. RESULTS: Gains in bodyweight during gestation were significantly higher in the High vs. the Moderate nutrition groups. Placental and fetal growth parameters were not influenced by the plane of nutrition. However, transient weight loss in mid-gestation from acutely reduced food intake resulted in morphological changes to the allantochorion and decreased foal birthweight. CONCLUSIONS: Excessive weight gain during gestation in maiden Thoroughbred fillies does not result in nutrient partitioning to the dam at the expense of the fetus. However, sudden weight loss in mid-gestation has detrimental effects on placental development which results in reduced fetal growth. POTENTIAL RELEVANCE: Clinicians should appreciate the likely effects of maternal infection and resulting weight loss on pregnancy outcome.  相似文献   

9.
Ruminant placental lactogens (PL) are members of the somatotropin, prolactin gene family that are synthesized by trophectodermal binucleate cells. The structure and biology of PL has been studied in the cow, sheep, and goat. Ruminant PL have greater structural identity to prolactin than somatotropin, although they bind to both lactogenic and somatogenic receptors. The molecular weights of ovine and caprine PL are approximately 23,000, whereas bovine PL is larger (31,000 to 34,000) due to glycosylation. Placental lactogen is secreted into both the fetal and maternal circulations. The concentration of PL in the fetus decreases with advancing gestation, whereas PL concentration peaks in the maternal circulation during the last third of pregnancy then reaches a plateau. Furthermore, the maternal concentration of PL is 100- to 1,000-fold higher in sheep and goats than in cows. The precise factors that modulate secretion of PL are unknown, although placental mass and nutrition seem to play a role. Ruminant PL have both lactogenic and somatogenic biological activities and may also have unique activities mediated through a specific receptor. There is circumstantial evidence to suggest that PL plays a role in stimulating mammogenesis. Placental lactogen secreted into the fetal compartment may also help regulate fetal growth. Direct experimental data indicate that PL can regulate maternal intermediary metabolism. Thus, it may act as a partitioning agent to regulate nutrient supply for fetal growth. The precise biological function of PL in ruminants, therefore, still needs to be defined.  相似文献   

10.
The dialogue between the mammalian conceptus(embryo/fetus and associated membranes) involves signaling for pregnancy recognition and maintenance of pregnancy during the critical peri-implantation period of pregnancy when the stage is set for implantation and placentation that precedes fetal development. Uterine epithelial cells secrete and/or transport a wide range of molecules, including nutrients,collectively referred to as histotroph that are transported into the fetal-placental vascular system to support growth and development of the conceptus. The availability of uterine-derived histotroph has long-term consequences for the health and well-being of the fetus and the prevention of adult onset of metabolic diseases. Histotroph includes numerous amino acids, but arginine plays a particularly important role as a source of nitric oxide and polyamines required for fetal-placental development in rodents, swine and humans through mechanisms that remain to be fully elucidated. Mechanisms whereby arginine regulates expression of genes via the mechanistic target of rapamycin cell signaling pathways critical to conceptus development, implantation and placentation are discussed in detail in this review.  相似文献   

11.
For several mammalian species, it has been shown that fetal and early postnatal nutrition has a role in long-term lipid and glucose metabolism of the offspring, and it thus also may have consequences on milk yield in the dairy cow. For instance, high-energy diets during the last weeks of pregnancy may result in increased glycemia, which in turn, may alter fetal adipose tissue development. However, most research efforts on management and nutrition of dry cows have focused on minimizing metabolic disorders of the postpartum cow without devoting much attention to potential consequences for the offspring. Similarly, nutritional needs for proper placental development and early fetal growth have received little attention, despite the fact that alterations in placental and fetal development may alter expression of genes participating in homeorhesis of the offspring. Therefore, nutrition of the pregnant cow, both while lactating and dry, should also consider aspects of placental and fetal development that may affect health and performance of the progeny. Similarly, newborn calves and young heifers are fed to ensure a particular growth target without compromising mammary development, although data linking postnatal growth targets with future milk yield are scarce. However, milk yield not only depends on mammary development, but also on nutrient partitioning, which is regulated by the endocrine milieu. There are some periods of time during development where nutrition may have long-lasting effects on metabolic function and milk production. For instance, the first months of postnatal life seem to be critical because recent data from both retrospective and controlled studies indicate that increased growth rate or plane of nutrition during this phase is positively associated with future milk production. Postnatal growth rate depends on nutrition (a necessary but not sufficient condition) and management (i.e., grouping strategies and housing systems), and thus optimal rearing programs should be designed considering long-term consequences on milk yield.  相似文献   

12.
Adequate delivery of AA is essential for normal fetal growth and development. Recently, we reported that when ewes from the University of Wyoming flock (farm flock with adequate nutrition) were fed 50% (nutrient-restricted) or 100% (control-fed) of the NRC-recommended nutrient requirements between d 28 and 78 of gestation, fetal weights as well as concentrations of most AA in maternal and fetal blood were substantially reduced in nutrient-restricted vs. control-fed pregnancies. The current study utilized Baggs ewes, which were selected under a markedly different production system (range flock with limited nutrition), to test the hypothesis that adaptation of ewes to nutritional and environmental changes may alter placental efficiency and conceptus nutrient availability in the face of maternal nutrient restriction. Baggs ewes received 50 or 100% of the NRC nutrient requirements between d 28 and 78 of pregnancy. On d 78, maternal uterine arterial and fetal umbilical venous blood samples were obtained, and the ewes were euthanized. Amino acids and their metabolites (ammonia, urea, and polyamines) in plasma were analyzed using enzymatic and HPLC methods. The results showed that maternal plasma concentrations of 9 AA (Asp, Ile, Leu, Lys, Orn, Phe, Thr, Trp, and Val) as well as maternal and fetal plasma concentrations of ammonia and urea were reduced (P < 0.05) in nutrient-restricted compared with control-fed Baggs ewes. However, fetal plasma concentrations of all AA and polyamines did not differ (P = 0.842) between the 2 groups of ewes. Collectively, these findings suggest that Baggs ewes, by adapting to the harsh conditions and limited nutrition under which they were selected, were able to maintain fetal concentrations of AA in the face of a maternal nutrient restriction through augmenting placental efficiency.  相似文献   

13.
宫内发育迟缓(IUGR)降低仔猪存活率和生长性能,给养猪业带来严重经济损失.如何有效降低IUGR仔猪的出生,一直是行业关注的科学问题.胎盘是一个高度血管化的器官,其血管生成异常会阻碍氧气和营养物质的正常运输,导致胎盘无法正常向胎儿提供足够的营养物质,这可能是引起仔猪IUGR的重要因素.鉴于胎盘血管在胎猪生长过程中扮演的...  相似文献   

14.
宫内发育迟缓(intrauterine growth retardation,IUGR)是指胚胎或其器官在怀孕期间生长和发育受阻,表现为后代生长发育受限或停滞。初生低体重或极低体重是IUGR仔猪的主要特征。IUGR严重影响新生仔猪的存活和后期的生长发育。诱发IUGR的原因包括母体在妊娠期间养分摄入不足、发病、环境应激以及子宫和胎盘功能异常等。猪作为多胎家畜,受IUGR影响最为严重,主要原因在于妊娠期间母猪无法提供足够的养分满足子宫角上所有胎儿正常生长发育的需要。胎盘作为母子之间唯一的联系,胎盘营养物质能否正常转运与代谢是影响胎儿发育的重要因素。碳水化合物是胎儿宫内发育最主要的能量底物,胎盘的糖类转运及代谢异常对IUGR的形成至关重要。在糖代谢的过程中,葡萄糖、磷酸戊糖和果糖可以通过葡萄糖转运蛋白、胎盘滋养层细胞和血管生成等对仔猪宫内发育起到调控作用。文章阐述了胎盘糖代谢对仔猪宫内发育迟缓的调控作用,以期为减少IUGR发生及改善IUGR仔猪的生长发育提供科学依据。  相似文献   

15.
Maternal nutrient restriction from early to midgestation can lead to fetal growth retardation, with long-term impacts on offspring growth, physiology, and metabolism. We hypothesized that ewes from flocks managed under markedly different environmental conditions and levels of nutrition might differ in their ability to protect their own fetus from a bout of maternal nutrient restriction. We utilized multiparous ewes of similar breeding, age, and parity from 2 flocks managed as 1) ewes adapted to a nomadic existence and year-long, limited nutrition near Baggs, WY (Baggs ewes), and 2) University of Wyoming ewes with a sedentary lifestyle and continuous provision of more than adequate nutrition (UW ewes). Groups of Baggs ewes and UW ewes were fed 50 (nutrient restricted) or 100% (control fed) of National Research Council recommendations from d 28 to 78 of gestation, then necropsied, and fetal and placental data were obtained. Although there was a marked decrease (P < 0.05) in fetal weight and blood glucose concentrations in nutrient-restricted vs. control fed UW ewes, there was no difference in these fetal measurements between nutrient-restricted and control-fed Baggs ewes. Nutrient-restricted and control-fed UW ewes exhibited predominantly type A placentomes on d 78, but there were fewer (P c0.05) type A and greater (P < 0.05) numbers of type B, C, and D placentomes in nutrient-restricted than control-fed Baggs ewes. Placental efficiency (fetal weight/placentomal weight) was reduced (P = 0.04) in d 78 nutrient-restricted UW ewes when compared with control-fed UW ewes. In contrast, nutrient-restricted and control-fed Baggs ewes exhibited similar placental efficiencies on d 78. This is the first report of different placental responses to a nutritional challenge during pregnancy when ewes were selected under different management systems. These data are consistent with the concept that Baggs ewes or their conceptuses, which were adapted to both harsh environments and limited nutrition, initiated conversion of type A placentomes to other placentomal types when subjected to an early to mid-gestational nutrient restriction, whereas this conversion failed to occur in UW ewes. This early placentomal conversion in the Baggs ewes may function to maintain normal nutrient delivery to their developing fetuses during maternal nutrient restriction.  相似文献   

16.
The cumulative evidence that perinatal events have long-lasting ripple effects through the life of livestock animals should impact future nutritional and management recommendations at the farm level. The implications of fetal programming due to malnutrition, including neonatal survival and lower birth weights, have been characterized,particularly during early and mid-gestation, when placental and early fetal stages are being developed. The accelerated fetal growth during late pregnancy has been known for some time, while the impact of maternal stressors during this time on fetal development and by extent its postnatal repercussions on health and performance are still being defined.Maternal stressors during late pregnancy cannot only influence colostrogenesis but also compromise adequate intestinal development in the fetus, thus, that further limits the newborn's ability to absorb nutrients, bioactive compounds, and immunity(i.e., immunoglobulins, cytokines, and immune cells) from colostrum. These negative effects set the newborn calf to a challenging start in life by compromising passive immunity and intestinal maturation needed to establish a mature postnatal mucosal immune system while needing to digest and absorb nutrients in milk or milk replacer. Besides the dense-nutrient content and immunity in colostrum, it contains bioactive compounds such as growth factors, hormones, and cholesterol as well as molecular signals or instructions [e.g., microRNAs(miRNAs) and long non-coding RNAs(lncRNAs)] transferred from mother to offspring with the aim to influence postnatal gut maturation. The recent change in paradigm regarding prenatal materno-fetal microbiota inoculation and likely the presence of microbiota in the developing fetus intestine needs to be addressed in future research in ruminants. There still much to know on what prenatal or postnatal factors may predispose neonates to become susceptible to enteropathogens(e.g., enterotoxigenic Escherichia coli), causing diarrhea. From the host-side of this host-pathogen interaction, molecular data such as fecal RNA could, over time, help fill those gaps in knowledge. In addition, merging this novel fecal RNA approach with more established microbiome techniques can provide a more holistic picture of an enteropathogenesis and potentially uncover control points that can be addressed through management or nutrition at the farm level to minimize preweaning morbidity and mortality.  相似文献   

17.
The beef cattle industry relies on the use of high-forage diets to develop replacement females, maintain the cow herd, and sustain stocker operations Forage quantity and quality fluctuate with season and environmental conditions Depending on class and physiological state of the animal, a forage diet may not always meet nutritional requirements, resulting in reduced ADG or BW loss if supplemental nutrients are not provided It is important to understand the consequences of such BW loss and the economics of providing supplementation to the beef production system Periods of limited or insufficient nutrient availability can be followed by periods of compensatory BW gain once dietary conditions improve This may have less impact on breeding animals, provided reproductive efficiency is not compromised, where actual BW is not as important as it is in animals destined for the feedlot A rapidly evolving body of literature is also demonstrating that nutritional status of cows during pregnancy can affect subsequent offspring development and production characteristics later in life The concept of fetal programming is that maternal stimuli during critical periods of fetal development have long-term implications for offspring Depending on timing, magnitude, and duration of nutrient limitation or supplementation, it is possible that early measures in life, such as calf birth BW, may be unaffected, whereas measures later in life, such as weaning BW, carcass characteristics, and reproductive traits, may be influenced This body of research provides compelling evidence of a fetal programming response to maternal nutrition in beef cattle Future competitiveness of the US beef industry will continue to be dependent on the use of high-forage diets to meet the majority of nutrient requirements Consequences of nutrient restriction or supplementation must be considered not only on individual animal performance but also the developing fetus and its subsequent performance throughout life.  相似文献   

18.
19.
Nutritional intervention early in the course of critical illness in humans and animals can have a significant impact on morbidity and mortality. Enteral delivery of nutrients is less technically demanding, more physiologic, and less expensive than parenteral nutrition. Furthermore, as complete bowel rest during critical illness can be associated with detrimental intestinal structural and functional changes ultimately resulting in bacterial translocation from the gut, direct delivery of nutrients to the gastrointestinal tract is preferred in patients with sufficient gastrointestinal function to allow digestion and absorption of nutrients. Once the decision to "feed the gut" has been established, there are several routes of enteral nutrient delivery available. A sound knowledge of gastrointestinal function, anticipated duration of enteral support, and co-moribund conditions will help the clinician tailor a plan of nutrient delivery that optimally meets each patient's needs. This article will review available routes of nutrient delivery to the gastrointestinal tract, and discuss indications and contraindications for each.  相似文献   

20.
Uterine biology in pigs and sheep   总被引:2,自引:0,他引:2  
ABSTRACT: There is a dialogue between the developing conceptus (embryo-fetus and associated placental membranes) and maternal uterus which must be established during the peri-implantation period for pregnancy recognition signaling, implantation, regulation of gene expression by uterine epithelial and stromal cells, placentation and exchange of nutrients and gases. The uterus provide a microenvironment in which molecules secreted by uterine epithelia or transported into the uterine lumen represent histotroph required for growth and development of the conceptus and receptivity of the uterus to implantation. Pregnancy recognition signaling mechanisms sustain the functional lifespan of the corpora lutea (CL) which produce progesterone, the hormone of pregnancy essential for uterine functions that support implantation and placentation required for a successful outcome of pregnancy. It is within the peri-implantation period that most embryonic deaths occur due to deficiencies attributed to uterine functions or failure of the conceptus to develop appropriately, signal pregnancy recognition and/or undergo implantation and placentation. With proper placentation, the fetal fluids and fetal membranes each have unique functions to ensure hematotrophic and histotrophic nutrition in support of growth and development of the fetus. The endocrine status of the pregnant female and her nutritional status are critical for successful establishment and maintenance of pregnancy. This review addresses the complexity of key mechanisms that are characteristic of successful reproduction in sheep and pigs and gaps in knowledge that must be the subject of research in order to enhance fertility and reproductive health of livestock species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号