首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 145 毫秒
1.
为研究高寒沼泽湿地土壤碳氮贮量分布特征,探讨退化高寒沼泽湿地的恢复对策,本试验选择三江源区玛沁县大武滩不同退化高寒沼泽湿地为研究对象,分层采集湿地冻融丘和丘间土壤样品,分析土壤有机碳、总氮含量和贮量变化。结果表明:研究区0~30 cm是高寒湿地有机碳和总氮主要分布区,有机碳和总氮呈正相关关系。冻融丘和丘间的土壤含水量与土壤有机碳、总氮均呈极显著相关关系(P<0.01)。冻融丘和丘间的土壤含水量、有机碳、总氮、碳氮贮量均随着退化程度的加剧呈下降趋势,且冻融丘的下降速度较丘间快。有机碳、总氮、有机碳贮量和氮贮量与冻融丘的数量呈极显著负相关关系,与冻融丘的大小呈极显著正相关关系(P<0.01)。这些结果表明:高寒沼泽湿地土壤含水量、冻融丘的数量和大小对高寒湿地退化中土壤碳氮及贮量具有指示性,建议在高寒湿地修复中加强水分补充和冻融丘的保护。  相似文献   

2.
本试验选择黄河源区果洛州玛沁县大武滩不同退化高寒沼泽湿地为研究对象,分层采集冻融丘和丘间土壤样品,分析退化过程中土壤腐殖质变化以及相关的环境因子。结果表明:冻融丘和丘间土壤腐殖质随着退化程度的加剧而下降,冻融丘腐殖质碳、胡敏素和胡敏酸未退化与轻度退化、重度退化差异显著(P<0.05),对退化较丘间敏感;冻融丘和丘间的腐殖质碳、胡敏酸、富里酸和胡敏素含量与土壤含水量、总氮呈显著正相关(P<0.05),冻融丘土壤腐殖质组分与容重呈显著负相关(P<0.01);冻融丘中纤维二糖水解酶(CBH)、β-1,4-木糖苷酶(BXYL)、α-1,4-葡萄糖苷酶(αG)、β-1,4-葡萄糖苷酶(BG)、亮氨酸肽酶(LAP)、β-1,4-N-乙酰基氨基葡萄糖苷酶(NAG)和脲酶(UR)对胡敏素形成具有显著的促进作用,丘间酶活性对土壤腐殖质的形成具有显著的促进作用。综上所述,高寒沼泽湿地退化导致土壤腐殖质减少,致使碳功能的下降,土壤水分、全氮和土壤酶有利于湿地土壤腐殖质的形成,建议在高寒沼泽湿地修复中加强土壤水分和有机肥的补充。  相似文献   

3.
以天山北坡中段退化荒漠草地为研究对象,通过分析封育与放牧对草地土壤有机碳、易氧化碳、微生物量碳含量及活性有机碳的分配比例的影响,以揭示土壤质量的变化。结果表明:禁牧封育5年后草地土壤有机碳及其活性组分含量低于放牧草地。与封育草地相比,在5~10 cm放牧草地土壤有机碳、微生物量碳及MBC/SOC显著升高(P<0.05),分别增加了0.81 g·kg-1,34.12 mg·kg-1,0.59%;土壤易氧化碳含量及ROC/SOC在10~15 cm土层差异均达显著水平(P<0.05)。可见,荒漠草地在封育5年后土壤质量降低,因此,应该实行合理的围封-放牧体系,更有利于退化荒漠草地生态系统的恢复。  相似文献   

4.
为探索不同高寒草地类型中土壤有机碳、养分和可溶性有机碳的含量差异以及可溶性有机碳分布特征,以青海省4个高寒草地类型土壤0~10 cm和10~20 cm土层为研究对象,分析了土壤有机碳、全氮、全磷、全钾、可溶性有机碳含量,以及可溶性有机碳芳香性指数和腐殖化指数,并进一步探讨了可溶性有机碳含量与土壤有机碳、各养分含量之间的相关性。结果表明,不同高寒草地类型各土层土壤中全氮、有机碳、可溶性有机碳含量由高到低的顺序依次为:高寒草甸类>高寒草甸草原类>高寒草原类>高寒荒漠类,且不同类型之间差异显著(P<0.05)。随着土层的加深,土壤全氮、有机碳含量有降低趋势。不同类型高寒草地各土层土壤中可溶性有机碳的芳香性指数和腐殖化指数表现出与此相同的变化趋势。不同高寒草地各土层中可溶性有机碳与土壤全氮、有机碳含量之间均呈现出显著正相关关系(P<0.05)。综上所述,高寒草甸和高寒草甸草原土壤有机碳、全氮、可溶性有机碳含量较高,结构复杂。可溶性有机碳的芳香性指数和腐殖化指数在一定程度上能够反映土壤养分状况。  相似文献   

5.
为进一步揭示典型高寒地区紫花针茅草原退化进程中土壤有机碳含量及组分的变化规律,在具有典型特征的高寒草原设置了不同退化程度的研究样地,进行了野外观测、土壤样品采集、室内冻融作用处理,测定了土壤有机碳含量,分析了不同冻结时间、不同冻融循环次数对退化草原土壤有机碳含量及组分的作用规律。结果表明:较长冻结时间处理下,土壤有机碳、轻组有机碳含量呈增加趋势,重组有机碳含量呈减少趋势,从未退化到重度退化,有机碳、轻组有机碳含量增幅范围分别为1.34%~3.00%、7.75%~34.48%,重组有机碳含量减少幅度为1.83%~6.08%;随着冻融循环次数的增加,土壤有机碳、重组有机碳含量总体呈减少趋势,轻组有机碳含量则呈增加趋势,从未退化到重度退化,土壤有机碳、重组有机碳含量减少幅度分别为4.65%~35.68%、10.99%~55.17%,轻组有机碳含量的增幅范围为12.41%~51.11%。说明不同冻结时间、不同冻融循环次数对不同退化程度草地土壤有机碳含量及组分的影响不同,冻融循环次数总体上较冻结时间对土壤有机碳含量及组分的影响更明显;草地退化程度不同,对冻结时间、冻融循环次数的响应不同,冻结时间、冻融循环次数对重度退化程度草地土壤有机碳含量及组分的影响更显著,反映出高寒草原退化程度越重、土壤冻融循环次数越多越不利于草地土壤有机碳的稳定,并对土壤碳循环过程产生影响。  相似文献   

6.
以青藏高原东缘尕海湿地不同植被退化程度样地(未退化healthy vegetation(CK)、轻度退化slightly degraded vegetation(SD)、中度退化moderately degraded vegetation(MD)和重度退化heavily degraded vegetation(HD))为研究对象,分析了植被退化对湿地土壤不同层次总碳、活性碳、微生物量碳的影响,并计算了各退化程度的碳库管理指数。结果表明:除HD的活性炭外,土壤总有机碳和活性碳均随土层的增加而减少,0~40 cm平均总有机碳含量为CK > SD > MD > HD,CK显著高于其他退化阶段;土壤活性有机碳含量为CK > MD > SD > HD,植被退化显著降低土壤活性有机碳,尤其0~10 cm,10~20 cm土层的土壤活性碳比CK分别下降了72.31%和53.31%;CK和SD的微生物量碳随土层加深显著降低,HD恰好相反,0~40 cm平均土壤微生物量碳含量为MD > CK > SD > HD,MD显著增加土壤微生物量碳,而HD显著降低土壤微生物量碳;尕海湿地0~40 cm土层的碳库各项指数受表层的影响比较大,植被退化能显著降低表层土壤的总有机碳、稳态碳和碳库指数,而显著增加湿地碳库活度指数。  相似文献   

7.
明确湿地土壤活性有机碳组分分布特征对评价旱区生态效益、实现“双碳”目标等有重要作用。本研究以银川市阅海城市湿地为研究对象,分析城市湿地典型植被群落不同土层土壤有机碳、全氮及活性有机碳的分布特征。结果表明:0~60 cm土层芦苇(Phragmites australis)、茭白(Zizania latifolia)、香蒲(Typha orientalis)、菖蒲(Acorus tatarinowii)及碱蓬(Suaeda salsa)生长区土壤有机碳平均含量分别为2.13,2.99,2.77,3.35和3.15 g·kg-1。各植被类型下活性有机碳组分中可溶性有机碳变化规律与总有机碳一致。易氧化碳与微生物量碳含量均表现为碱蓬高于其他植被类型。湿地土壤有机碳含量与黏粒呈显著负相关,与全氮呈显著正相关。冗余分析发现植被类型和土层深度差异是影响土壤有机碳及其组分分布的主要因子。该研究表明植被类型会影响湿地的固碳能力,香蒲较其他植被固碳能力更强,而碱蓬生长区碳库稳定性及固碳能力均较弱。  相似文献   

8.
本文以典型的衡阳市紫色土丘陵坡地不同植被恢复阶段为研究对象,采用空间代替时间序列的方法,选用立地条件基本相似的草本阶段(Grassplot,GT)、灌草阶段(Frutex and grassplot,FG)、灌丛阶段(Frutex,FX)和乔灌阶段(Arbor and frutex,AF),通过调查取样和实验分析,对不同恢复阶段0~40 cm土层土壤水溶性有机碳,E280E250/E365E240/SOC及其影响因素进行了研究。结果表明:随着植被恢复的进行,土壤水溶性有机碳含量显著增加(P<0.05);土壤水溶性有机碳含量与土壤容重、重组有机碳呈极显著负相关(P<0.01),与土壤有机碳、全氮、碱解氮、速效磷、土壤微生物生物量碳、轻组有机碳呈显著或极显著正相关(P<0.05或P<0.01),与全磷、速效钾、pH值相关性不明显(P>0.05)。综上所述,土壤水溶有机碳与土壤肥力关系密切,可作为评价土壤肥力性状的生物学指标。  相似文献   

9.
为了研究洪泽湖湿地土壤有机碳组分的空间分布特征及生态环境效应,试验采用野外调研采样和室内试验分析相结合的方法,测定了3种类型湿地土壤总有机碳(SOC)、可溶性有机碳(DOC)和土壤微生物量碳(MBC)含量。结果表明:洪泽湖不同湿地的土壤活性有机碳含量差异较大,但在空间分布上具有明显的规律性,表现为河口湿地河漫滩地出湖湿地;土壤微生物量碳及可溶性有机碳与土壤总有机碳呈正相关;可溶性有机碳与土壤总有机碳比值和土壤微生物量碳与土壤总有机碳比值均表现为河漫滩地出湖湿地河口湿地,河口湿地土壤可溶性有机碳与土壤总有机碳、土壤微生物量碳与总有机碳比值低于其他两种类型湿地。  相似文献   

10.
以干旱、半干旱地区荒漠草原土壤为研究对象,研究氮(N)、磷(P)添加对荒漠草原0~30 cm土层土壤溶解性有机碳、微生物生物量碳和易氧化有机碳含量及有效率、土壤碳库管理指数(CPMI)、敏感指数(SI)的影响,探讨N、P添加后土壤溶解性有机碳、微生物生物量碳和易氧化有机碳对碳库管理指数的表征作用。结果表明,N添加、P添加或NP共同添加对荒漠草原0~20 cm土壤溶解性有机碳的累积有显著促进作用,但对0~20 cm土壤微生物生物量碳无显著影响。NP共同添加显著增加0~10 cm土层土壤易氧化有机碳。0~30 cm土层N、P添加的土壤溶解性有机碳的各项敏感指数均高于易氧化有机碳,说明土壤溶解性有机碳对短期N、P添加反应最敏感,因此可作为荒漠草原短期N、P添加对土壤有机碳变化的指示物。短期N、P添加能提高碳库管理指数,增加土壤有机质含量,促进荒漠草原土壤恢复。  相似文献   

11.
为给高寒湿地的退化监测和恢复治理提供科学理论依据,本试验在三江源黄河源区选取退化高寒湿地,采用空间代替时间的方法,选取不同退化阶段并利用常规实验室分析法和Biolog-Eco微平板法研究其土壤微生物群落结构及功能的变化特征。结果表明,高寒湿地、沼泽化草甸和退化草甸样地微生物群系相似性更高。不同退化程度的土壤微生物活性从高到低排序依次为:沼泽化草甸 > 退化草甸 > 湿地 > 重度退化草甸 > 退化草原。整个退化过程土壤微生物对酯类碳源代谢能力均为最强,在退化早期土壤微生物对酸类碳源的利用率较低。土壤微生物平均颜色变化率(Average well color development,AWCD)主要受到土壤全氮含量、土壤有机碳含量、全氮/全磷、植物盖度、土壤含水量和地下生物量的影响。  相似文献   

12.
为探究退化对高寒草甸土壤质量的影响,在甘肃省天祝藏族自治县金强河高寒草甸范围内设置未退化、轻度退化、中度退化、重度退化4个退化梯度,采用干筛法研究了不同退化程度高寒草甸0~30 cm土层土壤团聚体及其有机碳分布特征。结果表明:粒径>5 mm的团聚体含量随退化加剧显著降低,<0.25 mm粒级团聚体含量随退化加剧显著升高。大团聚体含量、平均重量直径及几何平均直径随退化加剧逐渐降低。团聚体有机碳含量随退化加剧呈先增加后降低趋势,大团聚体中0.25~0.5 mm粒级团聚体有机碳含量最高,各粒级团聚体有机碳含量均随土层加深而降低。未退化草地对有机碳的贡献率主要是> 5 mm粒级的团聚体,退化加剧,<0.25 mm的微团聚体对有机碳的贡献率逐渐升高。双因素分析表明退化程度与土壤深度的交互作用对团聚体分布、团聚体有机碳含量及有机碳贡献率有显著影响。草地退化导致土壤结构稳定性下降,大团聚体占比降低,对有机碳的贡献率减小。研究结果可从土壤团聚体及有机碳角度对退化草地的治理及可持续利用提供理论指导。  相似文献   

13.
Soil carbon and sugars play key roles in carbon (C) cycling in grassland ecosystems. However, little is known about their changes in quantity and composition in degraded alpine meadows in the Tibetan plateau. We compared vegetation C density, soil organic carbon (SOC) density, and soil sugars in nondegraded (ND), degraded (DA; following artificial restoration), and extremely degraded (ED) grasslands and analyzed the relation among these parameters by redundancy analysis (RDA) and structural equation models (SEMs). Belowground biomass, soil microbial biomass C, soil microbial biomass nitrogen (N), belowground biomass C density, SOC density, and soil sugars were lower in DA and ED grasslands than in ND grasslands. In addition, the ratio of belowground biomass to aboveground biomass (BAR) decreased with an increase in degradation. The ratio of belowground biomass to aboveground biomass was identified as the main indirect driving force of ecosystem C density by affecting total vegetation C and SOC densities. Soil dissolved organic carbon (DOC), microbial biomass carbon (SMBC), neutral sugars (NS), and total nitrogen (TN) were identified as main direct driving forces. The ratio of belowground biomass to aboveground biomass altered DOC, SMBC, NS, and TN and, consequently, was the primary driving force for the alpine meadows’ ecosystem C density. It was concluded that land management in alpine meadows should include practices that maintain a relatively high BAR in order to curb degradation and increase ecosystem C density.  相似文献   

14.
植物和土壤微生物是土壤团聚体黏合物和养分的重要来源,因此土壤团聚体组成及其养分库的变化可指示生态系统退化过程。本文在长江源区根据植被群落特征选取未退化、中度和严重退化高寒草甸,研究其土壤中大团聚体(>250μm)、微团聚体(55~250μm)和游离态粉粒黏粒(<55μm)含量、不同粒级团聚体碳氮磷含量及储量随草地退化的变化特征,并分析了植物和微生物活动与这些变化特征的关系。结果表明:未退化和中度退化高寒草甸土壤以微团聚体为主。退化使高寒草甸大团聚体和微团聚体碳氮含量及储量显著下降,但磷含量及储量未发生显著变化。游离态粉粒黏粒氮磷储量在严重退化高寒草甸显著增加。各团聚体碳氮含量与地上生物量和微生物量碳正相关,磷含量与微生物量碳负相关。本研究表明植物及受其影响的土壤微生物变化是造成高寒草甸退化后不同团聚体碳氮磷库变化的主要原因。  相似文献   

15.
为探究退化高寒草地植物群落组成及土壤性质的变化规律,本研究选择铁卜加、河南县不同退化程度高寒草地为研究对象,对轻、中、重度退化高寒草地的植物群落结构组成和土壤理化性质进行了分析研究。结果表明:随退化程度加剧,植被群落优势种由莎草科为主逐渐转变为杂类草为主;植被高度、盖度、地上-地下生物量逐渐减小;Patrick指数、Shannon-Wiener指数、Simpson多样性指数与Pielou指数呈先增后减趋势;土壤含水量、全碳、有机碳、硝态氮含量明显减小且土壤pH值逐渐偏弱碱性,促使土壤养分含量不断流失,贫瘠化加剧;经相关系数矩阵图分析,退化草地群落植被生物量受土壤含水率和氮含量变化影响较为严重。总之,高寒草地退化接替过程中,杂类草逐渐占植物群落组成的主导地位,土壤含水率和氮含量变化是致使这2个地方草地退化的关键性因子。  相似文献   

16.
本研究以宁夏盐池县潜在沙化草地(PD)、轻度沙化草地(LD)、中度沙化草地(MD)和重度沙化草地(SD)为对象,研究了不同沙化程度草地土壤有机碳(SOC)及其在不同粒径团聚体中的分布、活性有机碳组分和碳库指数在0~40 cm土层的变化,以探讨宁夏干旱风沙区沙化草地土壤有机碳及其碳库分配特征。结果表明:沙化导致草地SOC含量、储量及各粒级团聚体SOC含量显著降低,与PD相比,LD,MD和SD均降低40%以上。随草地沙化程度加剧,土壤易氧化有机碳(EOC)含量总体呈下降趋势,由PD的0.46~0.68 g·kg-1降至SD的0.34~0.47 g·kg-1,微生物量碳(MBC)含量在不同沙化程度草地之间差异不显著。伴随着草地沙化,EOC和MBC占SOC的比例逐渐升高,而碳库管理指数逐渐降低。由此,草地沙化可能会通过改变土壤有机碳活性而影响荒漠草原土壤碳库稳定性及草地生态环境质量。  相似文献   

17.
川西北沙化草地植被群落、土壤有机碳及微生物特征   总被引:4,自引:0,他引:4  
为探究川西北高寒沙化草地地表植被、土壤有机碳和微生物的特征,采用样地调查方法,研究了不同沙化程度草地地表植被状况及土壤有机碳、腐殖质碳、微生物数量和微生物量碳、氮的差异特征。结果表明,1)随沙化严重程度增加,植被群落盖度、植被地上和地下生物量急剧下降。与未沙化草地相比,轻度沙化、中度沙化、重度沙化和极重度沙化草地地上生物量分别降低了12.95%,40.60%,76.53%和91.78%,地下生物量分别降低了21.44%,44.00%,83.41%和94.65%。2)土壤有机碳、腐殖质碳组分均随着沙化程度的提高而呈下降的趋势,且0~20 cm土层变化最为显著。不同沙化草地各土层之间也存在差异,但重度和极重度沙化草地各土层之间没有显著差异。3)随着沙化程度的加剧,土壤微生物(细菌、真菌、放线菌)数量和微生物量碳、氮产生显著变化。土壤沙化加剧会导致土壤微生物数量、微生物量碳、氮含量显著降低,破坏土壤微生物群落结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号