首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 616 毫秒
1.
Animal noroviruses   总被引:1,自引:0,他引:1  
Among enteric caliciviruses, noroviruses belong to the genus Norovirus, one of the four accepted genera in the family Caliciviridae. These single-stranded, positive-sense RNA viruses are highly variable both genetically and antigenically. Several animal enteric caliciviruses that are morphologically indistinguishable and genetically closely related to human noroviruses have been identified. The first bovine enteric noroviruses were described in Great Britain and are known as Newbury Agent 2. At least three genetic clusters of porcine noroviruses join together within genogroup II noroviruses. Human noroviruses are the most important cause of acute gastroenteritis illness in people of all ages. In the USA, they are associated with approximately 30-50% of all food-borne outbreaks. Until now, noroviruses have not been associated with gastroenteritis outbreaks in immunocompetent animals. Neither bovine nor porcine noroviruses can replicate in cell culture, although human norovirus can grow in a complex 3D culture system. However, the recently discovered murine noroviruses can replicate in cell culture and are therefore used as model viruses to study human noroviruses. This review focusses on virus classification, virion structure, pathogenesis, epidemiology, immune response and diagnosis of animal noroviruses in comparison with human noroviruses. The classification of animal enteric caliciviruses within the Norovirus genus raises the question of whether transmission from an animal reservoir to humans could occur. Answering this question is important in determining the risk of cross-species infections affecting the epidemiology and evolution of these viruses and so complicating the control of human norovirus infections.  相似文献   

2.
Caliciviruses are known to cause different diseases in many animal species. The bovine enteric caliciviruses (BEC) are associated with diarrhoea in cattle. These viruses have been classified in the genus Norovirus and are closely related to human noroviruses, the leading cause of gastroenteritis in humans. This has raised questions about zoonotic transmission and an animal reservoir for the human viruses. Two samples from 41 stool samples collected for diagnostic purposes from diarrheic cattle in Aulendorf, Germany tested positive for BEC. The samples were amplified with new degenerate BEC specific primers, which amplify a 263 bp portion of the RNA polymerase region. Analysis of the nucleotide sequences showed that these viruses are most closely related to the Norovirus genogroup III/2 (Bo/NLV/Newbury-2/76/UK) viruses.  相似文献   

3.
Increasing incidences of emerging and re‐emerging diseases that are mostly zoonotic (e.g. severe acute respiratory syndrome, avian influenza H5N1, pandemic influenza) has led to the need for a multidisciplinary approach to tackling these threats to public and animal health. Accordingly, a global movement of ‘One‐Health/One‐Medicine’ has been launched to foster collaborative efforts amongst animal and human health officials and researchers to address these problems. Historical evidence points to the fact that pandemics caused by influenza A viruses remain a major zoonotic threat to mankind. Recently, a range of mathematical and computer simulation modelling methods and tools have increasingly been applied to improve our understanding of disease transmission dynamics, contingency planning and to support policy decisions on disease outbreak management. This review provides an overview of methods, approaches and software used for modelling the spread of zoonotic influenza viruses in animals and humans, particularly those related to the animal‐human interface. Modelling parameters used in these studies are summarized to provide references for future work. This review highlights the limited application of modelling research to influenza in animals and at the animal‐human interface, in marked contrast to the large volume of its research in human populations. Although swine are widely recognized as a potential host for generating novel influenza viruses, and that some of these viruses, including pandemic influenza A/H1N1 2009, have been shown to be readily transmissible between humans and swine, only one study was found related to the modelling of influenza spread at the swine‐human interface. Significant gaps in the knowledge of frequency of novel viral strains evolution in pigs, farm‐level natural history of influenza infection, incidences of influenza transmission between farms and between swine and humans are clearly evident. Therefore, there is a need to direct additional research to the study of influenza transmission dynamics in animals and at the animal‐human interface.  相似文献   

4.
The zoonotic introduction of an animal pathogen into the human population and the subsequent extension or alteration of its host range leading to the successful maintenance of the corresponding pathogen by human‐to‐human transmission pose a serious risk for world‐wide health care. Such a scenario occurred for instance by the introduction of simian immunodeficiency viruses into the human population resulting in the human immunodeficiency viruses (HIV) and the subsequent AIDS pandemic or the proposed recent host range switch of the SARS coronavirus from a presently unknown animal species to humans. The occurrence of zoonotic transmissions of animal viruses to humans is a permanent threat to human health and is even increased by changes in the human lifestyle. In this review, the potential of the zoonotic transmission of bovine, feline and equine foamy retroviruses will be discussed in the light of well‐documented cases of zoonotic transmissions of different simian foamy viruses to humans.  相似文献   

5.
The zoonotic introduction of an animal pathogen into the human population and the subsequent extension or alteration of its host range leading to the successful maintenance of the corresponding pathogen by human-to-human transmission pose a serious risk for world-wide health care. Such a scenario occurred for instance by the introduction of simian immunodeficiency viruses into the human population resulting in the human immunodeficiency viruses (HIV) and the subsequent AIDS pandemic or the proposed recent host range switch of the SARS coronavirus from a presently unknown animal species to humans. The occurrence of zoonotic transmissions of animal viruses to humans is a permanent threat to human health and is even increased by changes in the human lifestyle. In this review, the potential of the zoonotic transmission of bovine, feline and equine foamy retroviruses will be discussed in the light of well-documented cases of zoonotic transmissions of different simian foamy viruses to humans.  相似文献   

6.
Shiga toxin (Stx) [Verotoxin (VT)]-producing Escherichia coli (STEC), also called enterohaemorrhagic E. coli or VTEC are emerging zoonotic agents and became most important as human pathogens, particularly in the industrialized countries. Production of cytotoxins, also called Stx or VT, is the major pathogenicity determinant of STEC, which can cause life-threatening haemorrhagic diseases in humans. The spectrum of STEC phenotypes is diverse and domestic and wildlife animals constitute important reservoirs for these bacteria. STEC are spread from animal faeces to the environment, water and food. Ingestion of contaminated foodstuff and water, as well as contact with the environment, STEC-excreting animals or humans are the major sources of human infection. Economical changes in animal and food production, alteration of consumer habits and lack of specific immune response, particularly in urbanized populations, have contributed to the recent spread of STEC as a zoonotic agent. Supranational surveillance networks as well as national reference laboratories as sentinels play an important role in the prevention and control of STEC infections in humans. Development of new vaccines and probiotics may serve as future tools to control the spread of STEC in animals and humans.  相似文献   

7.
The risk of zoonotic disease transmission when handling livestock or animal products is substantial. In industrialized countries, the classical zoonotic diseases such as tuberculosis or brucellosis are no longer in the foreground. Latent zoonoses such as salmonellosis and campylobacteriosis can cause serious disease in humans and have become a major public health problem during the past years. Since animals infected with these pathogens show only mild transient disease or no clinical signs at all, new concepts in the entire production line ("stable to table") are necessary in order to avoid human infection. Two emerging viruses with zoonotic potential--avian influenza virus and Nipah virus--have been found in Asia in 1997 and 1999. Both diseases had a major impact on disease control and public health in the countries of origin. In order to cope threats from infectious diseases, in particular those of public health relevance, a combined effort among all institutions involved will be necessary. The proposed "European Center for Infectious Diseases" and the "Swiss center for zoonotic diseases" could be a potential approach in order to achieve this goal.  相似文献   

8.
Hepatitis E is a human disease mainly characterized by acute liver illness, which is caused by infection with the hepatitis E virus (HEV). Large hepatitis E outbreaks have been described in developing countries; however, the disease is also increasingly recognized in industrialized countries. Mortality rates up to 25% have been described for pregnant women during outbreaks in developing countries. In addition, chronic disease courses could be observed in immunocompromised transplant patients. Whereas the HEV genotypes 1 and 2 are mainly confined to humans, genotypes 3 and 4 are also found in animals and can be zoonotically transmitted to humans. Domestic pig and wild boar represent the most important reservoirs for these genotypes. A distinct subtype of genotype 3 has been repeatedly detected in rabbits and a few human patients. Recently, HEV genotype 7 has been identified in dromedary camels and in an immunocompromised transplant patient. The reservoir animals get infected with HEV without showing any clinical symptoms. Besides these well‐known animal reservoirs, HEV‐specific antibodies and/or the genome of HEV or HEV‐related viruses have also been detected in many other animal species, including primates, other mammals and birds. In particular, genotypes 3 and 4 infections are documented in many domestic, wildlife and zoo animal species. In most cases, the presence of HEV in these animals can be explained by spillover infections, but a risk of virus transmission through contact with humans cannot be excluded. This review gives a general overview on the transmission pathways of HEV to humans. It particularly focuses on reported serological and molecular evidence of infections in wild, domestic and zoo animals with HEV or HEV‐related viruses. The role of these animals for transmission of HEV to humans and other animals is discussed.  相似文献   

9.
Rodents serve as the natural reservoir and vector for a variety of pathogens, some of which are responsible for severe and life‐threatening disease in humans. Despite the significant impact in humans many of these viruses, including Old and New World hantaviruses as well as Arenaviruses, most have no specific vaccine or therapeutic to treat or prevent human infection. The recent success of wildlife vaccines to mitigate rabies in animal populations offers interesting insight into the use of similar strategies for other zoonotic agents of human disease. In this review, we discuss the notion of using baited vaccines as a means to interrupt the transmission of viral pathogens between rodent reservoirs and to susceptible human hosts.  相似文献   

10.
The clinical success of allotransplantation and the shortage of donor organs have led to a proposal for the use of animal organs as alternative therapeutic materials for humans. In that regard, swine are preferable to non-human primates as a source of donor organs. While applications for clinical trials for xenotransplantation have not yet been received in Canada, several trials have already been authorized in the United States. A major concern, however, is the potential for xenogeneic transmission of viruses from animals to humans via organ, tissue, or cellular transplantation or via ex vivo exposure of humans to porcine biologic materials. Xenotransplantation allows viruses to bypass the normal immunological defense mechanisms of the recipient. Furthermore, the use of immunosuppressive drugs following transplantation may facilitate the xenogeneic transmission of zoonotic agents. Of porcine viruses, swine hepatitis E virus does not cause any clinical symptoms in the natural host but is a likely zoonotic agent that can infect humans and cause hepatitis. Porcine circovirus type 1 is prevalent in swine populations with no known association with clinical disease, while circovirus type 2 causes post-weaning multi-systemic wasting syndrome. Porcine endogenous retrovirus is integrated into the host chromosomes while porcine cytomegalovirus undergoes latent infection. Two additional porcine herpesviruses have recently been identified in swine and have been named porcine lymphotrophic herpesviruses. These herpesviruses can potentially become reactivated in human recipients after xenotransplantation. All in all, there are a number of viruses in swine that are of primary concern to screen and eliminate from xenotransplantation protocols. Epidemiology and the current knowledge on xenogeneic risk of these viruses are discussed.  相似文献   

11.
Zoonotic diseases are infectious diseases transmittable between animals and humans and outbreaks of these diseases in animals can signify that humans are also infected (or vice versa). Thus, communication between animal and human health agencies is critical for surveillance. Understanding how these agencies conduct surveillance and share information is important for the development of successful automated zoonotic monitoring systems. Individual interviews were conducted with 13 professionals who perform animal or human zoonotic disease surveillance in one of the New England states. Questions centred on existing surveillance methods, collaborations between animal and human health agencies, and technological and data needs. The results showed that agencies routinely communicate over suspected zoonotic disease cases, yet there are barriers preventing automated electronic linking of health data of animals and humans. These include technological barriers and barriers due to sensitivity and confidentiality of information. Addressing these will facilitate the development of electronic systems for integrating animal and human zoonotic disease surveillance data.  相似文献   

12.
Brucellosis is not a sustainable disease in humans. The source of human infection always resides in domestic or wild animal reservoirs. The routes of infection are multiple: food-borne, occupational or recreational, linked to travel and even to bioterrorism. New Brucella strains or species may emerge and existing Brucella species adapt to changing social, cultural, travel and agricultural environment. Brucella melitensis is the most important zoonotic agent, followed by Brucella abortus and Brucella suis. This correlates with the fact that worldwide, the control of bovine brucellosis (due to B. abortus) has been achieved to a greater extent than the control of sheep and goat brucellosis (due to B. melitensis), these latter species being the most important domestic animals in many developing countries. The long duration and high cost of treatment of human brucellosis reduces the efficacy of the therapy. There is no human vaccine for brucellosis and the occurrence of brucellosis is directly linked to the status of animal brucellosis in a region. In this context, the Word Health Organization has defined the development of a human vaccine, besides the implementation of control and eradication programs in animals, as a high priority. The pathogenicity for humans of B. suis biovars 1, 3 and 4 is well established, whereas B. suis biovar 2 seems to be less pathogenic. Indeed, although hunters and pig farmers have repeatably experienced infectious contact with B. suis biovar 2 (found in wild boar and outdoor-rearing pigs in Europe), isolation of B. suis biovar 2 from human samples have only been seldom reported. Marine mammal brucellosis, due to two new proposed Brucella species i.e. B. cetaceae and B. pinnipediae, represents a new zoonotic threat but the pathogenicity for humans of the different Brucella species found in cetaceans and pinnipeds still has to be clearly established.  相似文献   

13.
Small animal practitioners are well versed in the potential zoonoses from dogs and cats. Although these account for the vast majority of documented cases of zoonotic disease in humans, there are documented as well as potential zoonotic diseases that the nontraditional companion animal is capable of transmitting. This article is a compilation of potential disease risks to veterinarians, staff, and owners of nontraditional companion animals. In addition, the article may serve as a training tool for veterinary practices.  相似文献   

14.
Brucellosis, especially caused by Brucella melitensis, remains one of the most common zoonotic diseases worldwide with more than 500,000 human cases reported annually. The bacterial pathogen is classified by the CDC as a category (B) pathogen that has potential for development as a bio-weapon. Brucella spp. are considered as the most common laboratory-acquired pathogens. The geographical distribution of brucellosis is constantly changing with new foci emerging or re-emerging. The disease occurs worldwide in both animals and humans, except in those countries where bovine brucellosis has been eradicated. The worldwide economic losses due to brucellosis are extensive not only in animal production but also in human health. Although a number of successful vaccines are being used for immunization of animals, no satisfactory vaccine against human brucellosis is available. When the incidence of brucellosis is controlled in the animal reservoirs, there is a corresponding and significant decline in the incidence in humans.  相似文献   

15.
Brucellosis and tularemia are classical zoonotic diseases transmitted from an animal reservoir to humans. Both, wildlife and domestic animals, contribute to the spreading of these zoonoses. The surveillance of the animal health status is strictly regulated for domestic animals, whereas systematic disease monitoring in wildlife does not exist. The aim of the present study was to provide data on the prevalence of anti-Brucella, anti-Francisella and anti-Yersinia antibodies in wild boars from North-Eastern Germany to assess public health risks. A total of 763 sera of wild boars from Mecklenburg-Western Pomerania hunted in 1995/1996 were tested using a commercially available Brucella suis ELISA, an in-house lipopolysaccharide (LPS)-based Francisella ELISA, and commercially available Western blot kits for the detection of anti-Francisella and anti-Yersinia antibodies. The Yersinia enterocolitica O:9 LPS is able to induce serological cross-reactions indistinguishable from brucellosis due to a similar immunodominant epitope in the Brucella O-polysaccharide. The Yersinia Western blot assay was, therefore, based on five recombinant Yersinia outer proteins which have been proved to be specific for the serodiagnosis of yersiniosis. Anti-Brucella, anti-Francisella and anti-Yersinia antibodies were detected in 22.0%, 3.1%, and 62.6% of the wild boars, respectively. The high seroprevalence of tularemia and brucellosis in wild boars indicates that natural foci of these zoonoses are present in wildlife in Germany. However, the impact of transmission of zoonotic pathogens from wildlife to livestock is unknown. Only careful and systematic monitoring will help to prevent the (re)emergence of these zoonotic diseases in domestic animals and consequently human infection.  相似文献   

16.
17.
Human norovirus (NoV) is reportedly the major cause of non-bacterial gastroenteritis outbreaks worldwide and is commonly associated with water- and food-borne transmission via the faecal-oral route. Aside from humans, norovirus has been detected in pigs, cattle and mice. The close relatedness of some human and animal noroviruses has raised concerns about potential zoonotic transmission. Our laboratory recently reported the development of a multiplex real-time RT-PCR for the detection and genotyping of norovirus of genogroups I-III. Here we report a study of 56 faecal specimens from pigs and sheep that were collected and screened for noroviruses using this assay. Norovirus was found in 2/23 (9%) of porcine specimens (all were genogroup II) and in 8/33 (24%) of ovine specimens (all were genogroup III). Samples tested positive for norovirus were verified by conventional RT-PCR with different primer sets. Genomes of representative porcine and ovine norovirus strains underwent partial sequence analysis (343 and 2045 bases, respectively). This is the first report describing norovirus in sheep.  相似文献   

18.
During the last 10 years, scientists have grown increasingly aware that emerging respiratory viruses are often zoonotic in their origin. These infections can originate from or be amplified in livestock. Less commonly recognized are instances when humans have transmitted their respiratory pathogens to animals (reverse zoonoses). Even with this knowledge of viral exchange at the human–livestock interface, few studies have been conducted to understand this cross‐over. In this pilot study, we examined persons with influenza‐like illness at an outpatient clinic for evidence of infection with novel zoonotic respiratory pathogens in rural North Carolina where there are dense swine and poultry farming. Environmental air sampling was also conducted. From July 2016 to March 2017, a total of 14 human subjects were enrolled and sampled, and 192 bioaerosol samples were collected. Of the 14 human subject samples molecularly tested, three (21.4%) were positive for influenza A, one (7.1%) for influenza B and one (7.1%) for human enterovirus. Of the 192 bioaerosol samples collected and tested by real‐time RT‐PCR or PCR, three (1.6%) were positive for influenza A and two (1.0%) for adenovirus. No evidence was found for novel zoonotic respiratory viruses.  相似文献   

19.
Hepatitis E outbreaks are a serious public health concern in developing countries. The disease causes acute infections, primarily in young adults. The mortality rate is approximately 2%; however, it can exceed 20% in pregnant women in some regions in India. The causative agent, hepatitis E virus (HEV), has been isolated from several animal species, including pigs. HEV genotypes 3 and 4 have been isolated from both humans and animals, and are recognized as zoonotic pathogens. Seroprevalence studies in animals and humans indirectly suggest that HEV infections occur worldwide. The virus is primarily transmitted to humans via undercooked animal meats in developed countries. Moreover, transfusion- and transplantation-mediated HEV infections have recently been reported. This review summarizes the general characteristics of hepatitis E, HEV infection status in animals and humans, the zoonotic transmission modes of HEV, and HEV vaccine development status.  相似文献   

20.
Since the introduction of the genus Arcobacter in 1991, the association of Arcobacter butzleri, Arcobacter cryaerophilus and Arcobacter skirrowii with humans and animals has been clearly established. These bacteria have been detected world wide in products of animal origin and in healthy animals as well as in surface water. A fourth species Arcobacter cibarius was recently discovered on chicken carcasses. Although evidence was found for the connection of Arcobacter spp. with human and animal illness, Arcobacter spp. can be pathogens, opportunistic pathogens and commensals. Their potential as zoonotic foodborne and waterborne agents, the routes of transmission and the pathogenic mechanisms of these bacteria are largely unknown. Production of toxins or other virulence factors has not been demonstrated but adhesive and/or invasive properties were apparent. Antibiotic resistance is present in Arcobacter strains to significant levels. The tools to genetically access Arcobacter-like transformation of strains, construction of mutants are not yet available. Nor have genes (i.e. potential virulence factors) been cloned, expressed and characterized in other host organisms. Therefore those interested in the microbiology of these organisms eagerly await publication of the complete nucleotide sequence of the Arcobacter genome. The abundant presence of four Arcobacter species in foods of animal origin and the recovery of these bacteria from surface and drinking water suggest an important role of these bacteria as foodborne or waterborne agent and possibly as zoonotic agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号