首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most emerging infectious diseases are zoonotic, yet recent commissions have highlighted deficiencies in their surveillance. We conducted a survey to understand the needs of state agencies for zoonotic disease surveillance. The findings will hopefully support the development of biomedical informatics applications that can link animal and human data for surveillance.  相似文献   

2.
新发传染病主要是人畜共患病,是世界经济和公共健康的沉重负担。这就要求加强检测、鉴别和监视传染病的能力方面投入。高致病禽流感H5N1、新甲型流感("猪流感")H1N1、非典型性肺炎、西尼罗河病毒、地方流行性狂犬病、布鲁氏菌病以及发展中国家暴发的其它人畜共患病及近期猪抗甲氧西林金黄色葡萄球菌,是人类、动物及其环境相互作用的典型范例。面临中国动物和人类常见的新发传染病坚持"同一个健康"战略,这就要求业已存在的兽医和人医及公共卫生机构的通力合作。人的疾病控制系统与动物疾病控制系统虽然都已经建立,但人畜共患病的暴发表明兽医机构和人医机构密切合作的重要性。在保证环境健康的同时,通过动物疾病和人类疾病监测系统的密切合作,中国就一定能够控制人畜共患病。以这种方式进行疾病预防、监测与应对,各层面及各动物生产部门间有效的兽医推广是加强和保持健康生态环境中人和动物健康的有效办法。中国还需大量努力才能达到从制度上保证预防和消灭疾病。透明而准确的人与动物疾病监督通常会产生经济且可持续的预防疾病方法。加拿大在兽医、公共健康、食品安全和人畜共患病预防方面所发挥的作用就是与中国农业部合作,促进必要的、可持续的兽医监督网络的建设。  相似文献   

3.
As 75 per cent of emerging infectious diseases are of animal origin, a One Health approach that integrates the health of humans, animals and the environment could provide an earlier opportunity for zoonotic disease detection and prevention. In Australia, human, animal and ecological health are managed by separate sectors with limited communication. This study aims to explore how professionals in these fields perceive a One Health approach to zoonotic disease surveillance, aiming to identify the challenges to the implementation of an integrated system in Australia. Using a qualitative research method, ten semistructured interviews were conducted with academic experts to gain insight into the possibility of developing an integrated surveillance system in Australia. A thematic analysis of the data was undertaken. Findings showed the absence of a clear definition and subsequent vision for the future of One Health act as a barrier to interdisciplinary collaboration, and that siloed approaches by different sectors restrict the ability for professionals to work collaboratively across disciplines. An understanding of disease transmission was considered by participants to be a necessary requirement for a successful One Health approach. Finally, participants considered political will an essential requirement for the integration of surveillance systems. This study demonstrates that for a One Health approach to be implemented in an Australian setting, those working in the fields of human, animal and ecological health must agree on several aspects. The establishment of a formal governance body with representatives from each sector could assist in overcoming long‐standing barriers of privacy and distrust. Further, developing interdisciplinary training in One Health concepts for medical, environmental and veterinary students may encourage cross‐disciplinary collaboration. Finally, demonstrating to policymakers the economic benefit of improved and timely detection of zoonoses may help in facilitating a structured One Health approach to disease surveillance in Australia.  相似文献   

4.
Although 65% of recent major disease outbreaks throughout the world have a zoonotic origin, there is still a sharp division among the disciplines into the human and animal health sectors. In the last few decades, a global integrative concept, often referred to as ‘One Health’, has been strongly endorsed. Surveillance and monitoring efforts are major components for effective disease prevention and control. As human health and animal health are inextricably linked, it is assumed that a cross‐sectoral data interpretation of zoonotic disease information will improve their prevention, prediction and control. To provide an overview of existing systems throughout the world which integrate information from humans and animals on zoonotic diseases, a literature review was conducted. Twenty projects were identified and described regarding their concepts and realization. They all vary widely depending on their surveillance purpose, their structure and the source of information they use. What they have in common is that they quite often use data which have already been collected for another purpose. Therefore, the challenges of how to make use of such secondary data are of great interest.  相似文献   

5.
Zoonotic diseases concern human and animal populations and are transmitted between both humans and animals. Nevertheless, surveillance data on zoonoses are collected separately for the most part in different databases for either humans or animals. Bearing in mind the concept of One Health, it is assumed that a global view of these data might help to prevent and control zoonotic diseases. In following this approach, we wanted to determine which zoonotic data are routinely collected in Germany and whether these data could be integrated in a useful way to improve surveillance. Therefore, we conducted an inventory of the existing data collections and gathered information on possible One Health surveillance areas in Germany by approaching experts through a scoping survey, personal interviews and during a workshop. In matching the information between the status quo for existing data collections and the possible use cases for One Health surveillance, this study revealed that data integration is currently hindered by missing data, missing pathogen information or a lack of timeliness, depending on the surveillance purpose. Therefore, integrating the existing data would require substantial efforts and changes to adapt the collection procedures for routine databases. Nevertheless, during this study, we observed a need for different stakeholders from the human and animal health sectors to share information to improve the surveillance of zoonoses. Therefore, our findings suggest that before the data sets from different databases are integrated for joint analyses, the surveillance could be improved by the sharing of information and knowledge through a collaboration of stakeholders from different sectors and institutions.  相似文献   

6.
For the response to a zoonotic disease outbreak to be effective, animal health authorities and disease specialists must be involved. Animal health measures are commonly directed at known diseases that threaten the health of animals and impact owners. The measures have long been applied to zoonotic diseases, including tuberculosis and brucellosis, and can be applied to emerging diseases. One Health (veterinary, public, wildlife and environmental health) and all-hazards preparedness work have done much to aid interdisciplinary understanding and planning for zoonotic diseases, although further improvements are needed. Actions along the prevention, preparedness, response and recovery continuum should be considered. Prevention of outbreaks consists largely of import controls on animals and animal products and biosecurity. Preparedness includes situational awareness, research, tool acquisition, modelling, training and exercises, animal movement traceability and policy development. Response would include detection systems and specialized personnel, institutions, authorities, strategies, methods and tools, including movement control, depopulation and vaccination if available and appropriate. The specialized elements would be applied within a general (nationally standardized) system of response. Recovery steps begin with continuity of business measures during the response and are intended to restore pre-event conditions. The surveillance for novel influenza A viruses in swine and humans and the preparedness for and response to the recent influenza pandemic illustrate the cooperation possible between the animal and public health communities.  相似文献   

7.
This paper identifies some of the more important diseases at the wildlife-livestock interface and the role wildlife plays in disease transmission. Domestic livestock, wildlife and humans share many similar pathogens. Pathogens of wild or domestic animal origin that can cause infections in humans are known as zoonotic organisms and the converse are termed as anthroponotic organisms. Seventy-seven percent of livestock pathogens and 91% of domestic carnivore pathogens are known to infect multiple hosts, including wildlife. Understanding this group of pathogens is critical to public health safety, because they infect a wide range of hosts and are most likely to emerge as novel causes of infection in humans and domestic animals. Diseases at the wildlife-livestock interface, particularly those that are zoonotic, must be an area of focus for public health programs and surveillance for emerging infectious diseases. Additionally, understanding wildlife and their role is a vital part of understanding the epidemiology and ecology of diseases. To do this, a multi-faceted approach combining capacity building and training, wildlife disease surveillance, wildlife-livestock interface and disease ecology studies, data and information sharing and outbreak investigation are needed.  相似文献   

8.
This meeting report summarizes the discussions and recommendations of a Blue Ribbon Panel convened by the Science and Technology Policy Institute at the Institute for Defense Analysis on behalf of the White House Office of Science and Technology Policy (OSTP) on 13 September 2006 to discuss the potential utility and possible strategies for design and implementation of a companion animal health surveillance system. The panel comprised representatives from federal agencies, state agencies, academia, professional societies, and the private sector. The panel concluded that a companion animal surveillance system might prove valuable to efforts to protect public health, but that further study of the relationship between companion animal health and human health were needed to assess the utility and potential applications of a companion animal surveillance system. The findings of this panel may be used, along with other important sources of information, to inform policy discussions focussed on identifying strategies for recognizing and monitoring zoonotic disease threats appearing in companion animals in the USA.  相似文献   

9.
The Armed Forces Health Surveillance Center (AFHSC), Division of Global Emerging Infections Surveillance and Response System conducts disease surveillance through a global network of US Department of Defense research laboratories and partnerships with foreign ministries of agriculture, health and livestock development in over 90 countries worldwide. In 2010, AFHSC supported zoonosis survey efforts were organized into four main categories: (i) development of field assays for animal disease surveillance during deployments and in resource limited environments, (ii) determining zoonotic disease prevalence in high-contact species which may serve as important reservoirs of diseases and sources of transmission, (iii) surveillance in high-risk human populations which are more likely to become exposed and subsequently infected with zoonotic pathogens and (iv) surveillance at the human-animal interface examining zoonotic disease prevalence and transmission within and between human and animal populations. These efforts have aided in the detection, identification and quantification of the burden of zoonotic diseases such as anthrax, brucellosis, Crimean Congo haemorrhagic fever, dengue fever, Hantaan virus, influenza, Lassa fever, leptospirosis, melioidosis, Q fever, Rift Valley fever, sandfly fever Sicilian virus, sandfly fever Naples virus, tuberculosis and West Nile virus, which are of military and public health importance. Future zoonotic surveillance efforts will seek to develop local capacity for zoonotic surveillance focusing on high risk populations at the human-animal interface.  相似文献   

10.
During the last decade, the concept of One Health has become the international standard for zoonotic disease control. This call for transdisciplinary collaboration between professionals in human, animal and environmental health has produced several successes in zoonotic disease control, surveillance and research. Despite the lack of a clear definition, a shared agenda or institutional governance, One Health has proven to be a fruitful idea. Due to its ambiguity, the One Health concept functions as a boundary object: by leaving room for interpretation to fit different purposes, it facilitates cooperation. In many cases, this results in the promotion of health of humans, animals and the environment. However, there are also situations in which this mutual benefit of a One Health approach is not that evident, for instance, when healthy animals are culled to protect public health. Although such a strategy could well be part of a One Health approach, it is hard to understand how this contributes to the health of concerning animals. Consequently, these practices often lead to public debate. This raises questions on how we should understand the One Health concept in zoonotic disease control. Is it really about equally improving the health of humans, animals and the environment and is this even possible? Or is it ultimately just public health that counts? In cases of conflict between different values, the lack of a universal definition of the One Health concept contributes to this complexity. Although boundary objects have many positive aspects, in the context of One Health and zoonotic disease control, this conception seems to conceal underlying normative differences. To address moral dilemmas related to a One Health approach in zoonotic disease control, it is important to reflect on moral status and the meaning of health for humans, animals and the environment.  相似文献   

11.
Diseases resulting from zoonotic transmission of parasites are common. Humans become infected through food, water, soil and close contact with animals. Most parasitic zoonoses are neglected diseases despite causing a considerable global burden of ill health in humans and having a substantial financial burden on livestock industries. This review aims to bring together the current data available on global burden estimates of parasitic zoonoses and indicate any changes in the trends of these diseases. There is a clear need of such information as interventions to control zoonoses are often in their animal hosts. The costs of such interventions together with animal health issues will drive the cost effectiveness of intervention strategies. What is apparent is that collectively, parasitic zoonoses probably have a similar human disease burden to any one of the big three human infectious diseases: malaria, tuberculosis or HIV in addition to animal health burden. Although the global burden for most parasitic zoonoses is not yet known, the major contributors to the global burden of parasitic zoonoses are toxoplasmosis, food borne trematode infections, cysticercosis, echinococcosis, leishmaniosis and zoonotic schistosomosis. In addition, diarrhoea resulting from zoonotic protozoa may have a significant impact.  相似文献   

12.
Brucellosis and tularemia are classical zoonotic diseases transmitted from an animal reservoir to humans. Both, wildlife and domestic animals, contribute to the spreading of these zoonoses. The surveillance of the animal health status is strictly regulated for domestic animals, whereas systematic disease monitoring in wildlife does not exist. The aim of the present study was to provide data on the prevalence of anti-Brucella, anti-Francisella and anti-Yersinia antibodies in wild boars from North-Eastern Germany to assess public health risks. A total of 763 sera of wild boars from Mecklenburg-Western Pomerania hunted in 1995/1996 were tested using a commercially available Brucella suis ELISA, an in-house lipopolysaccharide (LPS)-based Francisella ELISA, and commercially available Western blot kits for the detection of anti-Francisella and anti-Yersinia antibodies. The Yersinia enterocolitica O:9 LPS is able to induce serological cross-reactions indistinguishable from brucellosis due to a similar immunodominant epitope in the Brucella O-polysaccharide. The Yersinia Western blot assay was, therefore, based on five recombinant Yersinia outer proteins which have been proved to be specific for the serodiagnosis of yersiniosis. Anti-Brucella, anti-Francisella and anti-Yersinia antibodies were detected in 22.0%, 3.1%, and 62.6% of the wild boars, respectively. The high seroprevalence of tularemia and brucellosis in wild boars indicates that natural foci of these zoonoses are present in wildlife in Germany. However, the impact of transmission of zoonotic pathogens from wildlife to livestock is unknown. Only careful and systematic monitoring will help to prevent the (re)emergence of these zoonotic diseases in domestic animals and consequently human infection.  相似文献   

13.
Increasing incidences of emerging and re‐emerging diseases that are mostly zoonotic (e.g. severe acute respiratory syndrome, avian influenza H5N1, pandemic influenza) has led to the need for a multidisciplinary approach to tackling these threats to public and animal health. Accordingly, a global movement of ‘One‐Health/One‐Medicine’ has been launched to foster collaborative efforts amongst animal and human health officials and researchers to address these problems. Historical evidence points to the fact that pandemics caused by influenza A viruses remain a major zoonotic threat to mankind. Recently, a range of mathematical and computer simulation modelling methods and tools have increasingly been applied to improve our understanding of disease transmission dynamics, contingency planning and to support policy decisions on disease outbreak management. This review provides an overview of methods, approaches and software used for modelling the spread of zoonotic influenza viruses in animals and humans, particularly those related to the animal‐human interface. Modelling parameters used in these studies are summarized to provide references for future work. This review highlights the limited application of modelling research to influenza in animals and at the animal‐human interface, in marked contrast to the large volume of its research in human populations. Although swine are widely recognized as a potential host for generating novel influenza viruses, and that some of these viruses, including pandemic influenza A/H1N1 2009, have been shown to be readily transmissible between humans and swine, only one study was found related to the modelling of influenza spread at the swine‐human interface. Significant gaps in the knowledge of frequency of novel viral strains evolution in pigs, farm‐level natural history of influenza infection, incidences of influenza transmission between farms and between swine and humans are clearly evident. Therefore, there is a need to direct additional research to the study of influenza transmission dynamics in animals and at the animal‐human interface.  相似文献   

14.
Collaboration between animal and public health sectors has been highlighted as a means to improve the management of zoonotic threats. This includes surveillance systems for zoonoses, where enhanced cross‐sectoral integration and sharing of information are seen as key to improved public health outcomes. Yet, there is a lack of evidence on the economic returns of such collaboration, particularly in the development and implementation of surveillance programmes. The economic assessment of surveillance in this context needs to be underpinned by the understanding of the links between zoonotic disease surveillance in animal populations and the wider public health disease mitigation process and how these relations impact on the costs and benefits of the surveillance activities. This study presents a conceptual framework of these links as a basis for the economic assessment of cross‐sectoral zoonoses surveillance with the aim of supporting the prioritization of resource allocation to surveillance. In the proposed framework, monetary, non‐monetary and intermediate or intangible cost components and benefit streams of three conceptually distinct stages of zoonotic disease mitigation are identified. In each stage, as the final disease mitigation objective varies so does the use of surveillance information generated in the animal populations for public health decision‐making. Consequently, the associated cost components and benefit streams also change. Building on the proposed framework and taking into account these links, practical steps for its application are presented and future challenges are discussed.  相似文献   

15.
The risk of zoonotic disease transmission when handling livestock or animal products is substantial. In industrialized countries, the classical zoonotic diseases such as tuberculosis or brucellosis are no longer in the foreground. Latent zoonoses such as salmonellosis and campylobacteriosis can cause serious disease in humans and have become a major public health problem during the past years. Since animals infected with these pathogens show only mild transient disease or no clinical signs at all, new concepts in the entire production line ("stable to table") are necessary in order to avoid human infection. Two emerging viruses with zoonotic potential--avian influenza virus and Nipah virus--have been found in Asia in 1997 and 1999. Both diseases had a major impact on disease control and public health in the countries of origin. In order to cope threats from infectious diseases, in particular those of public health relevance, a combined effort among all institutions involved will be necessary. The proposed "European Center for Infectious Diseases" and the "Swiss center for zoonotic diseases" could be a potential approach in order to achieve this goal.  相似文献   

16.
This paper reviews recent progress in the development of syndromic surveillance systems for veterinary medicine. Peer-reviewed and grey literature were searched in order to identify surveillance systems that explicitly address outbreak detection based on systematic monitoring of animal population data, in any phase of implementation. The review found that developments in veterinary syndromic surveillance are focused not only on animal health, but also on the use of animals as sentinels for public health, representing a further step towards One Medicine. The main sources of information are clinical data from practitioners and laboratory data, but a number of other sources are being explored. Due to limitations inherent in the way data on animal health is collected, the development of veterinary syndromic surveillance initially focused on animal health data collection strategies, analyzing historical data for their potential to support systematic monitoring, or solving problems of data classification and integration. Systems based on passive notification or data transfers are now dealing with sustainability issues. Given the ongoing barriers in availability of data, diagnostic laboratories appear to provide the most readily available data sources for syndromic surveillance in animal health. As the bottlenecks around data source availability are overcome, the next challenge is consolidating data standards for data classification, promoting the integration of different animal health surveillance systems, and also the integration to public health surveillance. Moreover, the outputs of systems for systematic monitoring of animal health data must be directly connected to real-time decision support systems which are increasingly being used for disease management and control.  相似文献   

17.
Shiga toxin (Stx) [Verotoxin (VT)]-producing Escherichia coli (STEC), also called enterohaemorrhagic E. coli or VTEC are emerging zoonotic agents and became most important as human pathogens, particularly in the industrialized countries. Production of cytotoxins, also called Stx or VT, is the major pathogenicity determinant of STEC, which can cause life-threatening haemorrhagic diseases in humans. The spectrum of STEC phenotypes is diverse and domestic and wildlife animals constitute important reservoirs for these bacteria. STEC are spread from animal faeces to the environment, water and food. Ingestion of contaminated foodstuff and water, as well as contact with the environment, STEC-excreting animals or humans are the major sources of human infection. Economical changes in animal and food production, alteration of consumer habits and lack of specific immune response, particularly in urbanized populations, have contributed to the recent spread of STEC as a zoonotic agent. Supranational surveillance networks as well as national reference laboratories as sentinels play an important role in the prevention and control of STEC infections in humans. Development of new vaccines and probiotics may serve as future tools to control the spread of STEC in animals and humans.  相似文献   

18.
Brucellosis, especially caused by Brucella melitensis, remains one of the most common zoonotic diseases worldwide with more than 500,000 human cases reported annually. The bacterial pathogen is classified by the CDC as a category (B) pathogen that has potential for development as a bio-weapon. Brucella spp. are considered as the most common laboratory-acquired pathogens. The geographical distribution of brucellosis is constantly changing with new foci emerging or re-emerging. The disease occurs worldwide in both animals and humans, except in those countries where bovine brucellosis has been eradicated. The worldwide economic losses due to brucellosis are extensive not only in animal production but also in human health. Although a number of successful vaccines are being used for immunization of animals, no satisfactory vaccine against human brucellosis is available. When the incidence of brucellosis is controlled in the animal reservoirs, there is a corresponding and significant decline in the incidence in humans.  相似文献   

19.
Brucellosis and tularemia are classical zoonotic diseases transmitted from an animal reservoir to humans. Both, wildlife and domestic animals, contribute to the spreading of these zoonoses. The surveillance of the animal health status is strictly regulated for domestic animals, whereas systematic disease monitoring in wildlife does not exist. The aim of the present study was to provide data on the prevalence of anti‐Brucella, anti‐Francisella and anti‐Yersinia antibodies in wild boars from North‐Eastern Germany to assess public health risks. A total of 763 sera of wild boars from Mecklenburg‐Western Pomerania hunted in 1995/1996 were tested using a commercially available Brucella suis ELISA, an in‐house lipopolysaccharide (LPS)‐based Francisella ELISA, and commercially available Western blot kits for the detection of anti‐Francisella and anti‐Yersinia antibodies. The Yersinia enterocolitica O:9 LPS is able to induce serological cross‐reactions indistinguishable from brucellosis due to a similar immunodominant epitope in the Brucella O‐polysaccharide. The Yersinia Western blot assay was, therefore, based on five recombinant Yersinia outer proteins which have been proved to be specific for the serodiagnosis of yersiniosis. Anti‐Brucella, anti‐Francisella and anti‐Yersinia antibodies were detected in 22.0%, 3.1%, and 62.6% of the wild boars, respectively. The high seroprevalence of tularemia and brucellosis in wild boars indicates that natural foci of these zoonoses are present in wildlife in Germany. However, the impact of transmission of zoonotic pathogens from wildlife to livestock is unknown. Only careful and systematic monitoring will help to prevent the (re)emergence of these zoonotic diseases in domestic animals and consequently human infection.  相似文献   

20.
Small animal practitioners are well versed in the potential zoonoses from dogs and cats. Although these account for the vast majority of documented cases of zoonotic disease in humans, there are documented as well as potential zoonotic diseases that the nontraditional companion animal is capable of transmitting. This article is a compilation of potential disease risks to veterinarians, staff, and owners of nontraditional companion animals. In addition, the article may serve as a training tool for veterinary practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号