首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Intravenous (i.v.) bolus administration of xylazine (XYL) (0.5 mg/kg) immediately followed by a continuous rate infusion (CRI) of 1 mg kg−1 hr−1 for 2, 4, and 6 hr produced immediate sedation, which lasted throughout the duration of the CRI. Heart rate decreased and blood pressure increased significantly (p > .05) in all horses during the first 15 min of infusion, both returned to and then remained at baseline during the duration of the infusion. Compartmental models were used to investigate the pharmacokinetics of XYL administration. Plasma concentration–time curves following bolus and CRI were best described by a one-compartment model. No differences were found between pharmacokinetic estimates of the CRIs for the fractional elimination rate constant (Ke), half-life (t1/2e), volume of distribution (Vd), and clearance (Cl). Median and range were 0.42 (0.15–0.97)/hr, 1.68 (0.87–4.52) hr, 5.85 (2.10–19.34) L/kg, and 28.7 (19.6–39.5) ml min−1 kg−1, respectively. Significant differences were seen for area under the curve ( ) (p < .0002) and maximum concentration (Cmax) (p < .04). This indicates that with increasing duration of infusion, XYL may not accumulate in a clinically relevant way and hence no adjustments are required in a longer XYL CRI to maintain a constant level of sedation and a rapid recovery.  相似文献   

2.
The pharmacokinetic characteristics of valnemulin in layer chickens were studied after single intravenous, intramuscular, and oral administration at a dose of 15 mg/kg body weight. Plasma samples at certain time points were collected and the drug concentrations in them by ultra high‐performance liquid chromatography tandem mass spectrometry (UHPLC‐MS). The concentration–time data for each individual were plotted by noncompartmental analysis for the whole three routes. Following intravenous administration, the plasma concentration showed tiny fluctuation. The elimination half‐life (), total body clearance (Cl), and area under the plasma concentration–time curve (AUC) were 1.85 ± 0.43 h, 2.2 ± 0.9 L/h, and 7.52 ± 2.46 μg·h/mL, respectively. Following intramuscular administration, the peak concentration (Cmax, 1.40 ± 0.43 μg/mL) was achieved at the time of 0.34 h. A multiple‐peak phenomenon existed after oral administration, and the first peak and secondary peak were at 10 min and during 2–4 h, respectively, while the tertiary peak appeared during 5–15 h. The bioavailability (F %) for intramuscular and oral administration was 68.60% and 52.64%, respectively. In present study, the detailed pharmacokinetic profiles showed that this drug is widely distributed and rapidly eliminated, however has a low bioavailability, indicating that valnemulin is likely to be a favorable choice in the clinical practice.  相似文献   

3.
The pharmacokinetics (PK) and pharmacodynamics (PD) of marbofloxacin (MBF) were determined in six healthy female goats of age 1.00–1.25 years after repeated administration of MBF. The MBF was administered intramuscularly (IM) at 2 mg kg?1 day?1 for 5 days. Plasma concentrations of MBF were determined by high‐performance liquid chromatography, and PK parameters were obtained using noncompartmental analysis. The MBF concentrations peaked at 1 hr, and peak concentration (Cmax) was 1.760 µg/ml on day 1 and 1.817 µg/ml on day 5. Repeated dosing of MBF caused no significant change in PK parameters except area under curve (AUC) between day 1 (AUC0–∞D1 = 7.67 ± 0.719 µg × hr/ml) and day 5 (AUC0‐∞D5 = 8.70 ± 0.857 µg × hr/ml). A slight difference in mean residence time between 1st and 5th day of administration and accumulation index (AI = 1.13 ± 0.017) suggested lack of drug accumulation following repeated IM administration up to 5 days. Minimum inhibitory concentration (MIC) demonstrated that Escherichia coli (MIC = 0.04 µg/ml) and Pasturella multocida (MIC = 0.05 µg/ml) were highly sensitive to MBF. Time‐kill kinetics demonstrated rapid and concentration‐dependent activity of MBF against these pathogens. PK/PD integration of data for E. coli and P. multocida, using efficacy indices: Cmax/MIC and AUC0–24hr/MIC, suggested that IM administration of MBF at a dose of 2 mg kg?1 day?1 is appropriate to treat infections caused by E. coli. However, a dose of 5 mg kg?1 day?1 is recommended to treat pneumonia caused by P. multocida in goats. The study indicated that MBF can be used repeatedly at dosage of 2 mg/kg in goats without risk of drug accumulation up to 5 days.  相似文献   

4.
Vallé, M., Schneider, M., Galland, D., Giboin, H., Woehrlé, F. Pharmacokinetic and pharmacodynamic testing of marbofloxacin administered as a single injection for the treatment of bovine respiratory disease. J. vet. Pharmacol. Therap. 35, 519–528. New approaches in Pharmacokinetic/Pharmacodynamic (PK/PD) integration suggested that marbofloxacin, a fluoroquinolone already licensed for the treatment of bovine respiratory disease at a daily dosage of 2 mg/kg for 3–5 days, would be equally clinically effective at 10 mg/kg once (Forcyl®), whilst also reducing the risk of resistance. This marbofloxacin dosage regimen was studied using mutant prevention concentration (MPC), PK simulation, PK/PD integration and an in vitro dynamic system. This system simulated the concentration–time profile of marbofloxacin in bovine plasma established in vivo after a single 10 mg/kg intramuscular dose and killing curves of field isolated Pasteurellaceae strains of high (minimum inhibitory concentration (MIC) MIC ≤0.03 μg/mL), average (MIC of 0.12–0.25 μg/mL) and low (MIC of 1 μg/mL) susceptibility to marbofloxacin. The marbofloxacin MPC values were 2‐ to 4‐fold the MIC values for all Mannheimia haemolytica, Pasteurella multocida tested. Marbofloxacin demonstrated a concentration‐dependant killing profile with bactericidal activity observed within 1 h for most strains. No resistance development (MIC ≥4 μg/mL) was detected in the dynamic tests. Target values for risk of resistance PK/PD surrogates (area under the curve (AUC) AUC24 h/MPC and T>MPC/TMSW ratio) were achieved for all clinically susceptible pathogens. The new proposed dosing regimen was validated in vitro and by PK/PD integration confirming the single‐injection short‐acting antibiotic concept.  相似文献   

5.
The aim of this study was to determine the pharmacokinetics/pharmacodynamics of enrofloxacin (ENR) and danofloxacin (DNX) following intravenous (IV) and intramuscular (IM) administrations in premature calves. The study was performed on twenty‐four calves that were determined to be premature by anamnesis and general clinical examination. Premature calves were randomly divided into four groups (six premature calves/group) according to a parallel pharmacokinetic (PK) design as follows: ENR‐IV (10 mg/kg, IV), ENR‐IM (10 mg/kg, IM), DNX‐IV (8 mg/kg, IV), and DNX‐IM (8 mg/kg, IM). Plasma samples were collected for the determination of tested drugs by high‐pressure liquid chromatography with UV detector and analyzed by noncompartmental methods. Mean PK parameters of ENR and DNX following IV administration were as follows: elimination half‐life (t1/2λz) 11.16 and 17.47 hr, area under the plasma concentration–time curve (AUC0‐48) 139.75 and 38.90 hr*µg/ml, and volume of distribution at steady‐state 1.06 and 4.45 L/kg, respectively. Total body clearance of ENR and DNX was 0.07 and 0.18 L hr?1 kg?1, respectively. The PK parameters of ENR and DNX following IM injection were t1/2λz 21.10 and 28.41 hr, AUC0‐48 164.34 and 48.32 hr*µg/ml, respectively. The bioavailability (F) of ENR and DNX was determined to be 118% and 124%, respectively. The mean AUC0‐48CPR/AUC0‐48ENR ratio was 0.20 and 0.16 after IV and IM administration, respectively, in premature calves. The results showed that ENR (10 mg/kg) and DNX (8 mg/kg) following IV and IM administration produced sufficient plasma concentration for AUC0‐24/minimum inhibitory concentration (MIC) and maximum concentration (Cmax)/MIC ratios for susceptible bacteria, with the MIC90 of 0.5 and 0.03 μg/ml, respectively. These findings may be helpful in planning the dosage regimen for ENR and DNX, but there is a need for further study in naturally infected premature calves.  相似文献   

6.
The single‐dose disposition kinetics of the antibiotic marbofloxacin were determined in Chinese soft‐shelled turtles (n = 10) after oral and intramuscular (i.m.) dose of 10 mg/kg bodyweight. The in vitro and ex vivo activities of marbofloxacin in serum against a pathogenic strain of Aeromonas hydrophila were determined. A concentration‐dependent antimicrobial activity of marbofloxacin was confirmed for levels lower than 4 × MIC. For in vivo PK data, values of AUC: minimum inhibitory concentration (MIC) ratio for serum were 1166.6 and 782.4 h, respectively, after i.m. and oral dosing of marbofloxacin against a pathogenic strain of A. hydrophila (MIC = 0.05 μg/mL). The ex vivo growth inhibition data after oral dosing were fitted to the inhibitory sigmoid Emax equation to provide the values of AUC/MIC required to produce bacteriostasis, bactericidal activity and elimination of bacteria. The respective values were 23.79, 36.35 and 126.46 h. It is proposed that these findings might be used with MIC50 or MIC90 data to provide a rational approach to the design of dosage schedules, which optimize efficacy in respect of bacteriological as well as clinical cures.  相似文献   

7.
The trial was aimed at evaluating probable superiority, if any of nano zinc (NZn) over inorganic zinc (Zn) on immunity, serum minerals and T3, T4, and IGF-1 hormone profiles in goats. NZn was synthesized by using 0.45 M aqueous solution of Zn nitrate and 0.9 M aqueous solution of sodium hydroxide (average particle size 74 nm). Twenty-four male goats were grouped into four groups as per their body weight and were supplemented with either a basal diet with concentrate and straw at 50:50 ratio (Negative control, NC) alone or supplemented with 50 mg/kg Zn (Control) from inorganic Zn source, that is ZnO (IZn-50), 50 mg/kg Zn from NZn (NZn-50) or 25 mg/kg Zn from NZn (NZn-25). No change was observed in thyroid hormone status on zero and 90th day of experimental feeding, but NZn supplementation improved (p < 0.05) IGF-1 level on 90th day serum samples. Zn supplementation improved the humoral immunity in all the groups irrespective of the source. Similarly, cell-mediated immunity (CMI) measured by skinfold thickness after injecting Con-A, was also improved in Zn supplemented groups than control at 6, 12 and 48 h of incubation. NZn-50 animals showed highest HI (haemagglutination inhibition) titre as well as skin thickness. The (cluster of differentiation in %) was more (p < 0.05) in Zn supplemented groups. NZn-50 showed higher (p < 0.05) count than NC and similar (p > 0.05) to IZn-50 and NZn-25 groups without affecting (p > 0.05) the ratio of , among the treatment groups. Thus, NZn supplementation at 25 mg/kg had similar immunity and serum T3, T4 and IGF-1 profiles compared with IZn at 50 mg/kg dose.  相似文献   

8.
Population pharmacokinetic of marbofloxacin was investigated with 52 plasma concentration–time profiles obtained after intramuscular administration of Forcyl® in cattle. Animal's status, pre‐ruminant, ruminant, or dairy cow, was retained as a relevant covariate for clearance. Monte Carlo simulations were performed using a stratification by status, and 1000 virtual disposition curves were generated in each bovine subpopulation for the recommended dosage regimen of 10 mg/kg as a single injection. The probability of target attainment (PTA) of pharmacokinetic/pharmacodynamic (PK/PD) ratios associated with clinical efficacy and prevention of resistance was determined in each simulated subpopulation. The cumulative fraction of response (CFR) of animals achieving a PK/PD ratio predictive of positive clinical outcome was then calculated for the simulated dosage regimen, taking into account the minimum inhibitory concentration (MIC) distribution of Pasteurella multocida, Mannheimia haemolytica, and Histophilus somni. When considering a ratio of AUC0‐24 hr/MIC (area under the curve/minimum inhibitory concentration) greater than 125 hr, CFRs ranging from 85% to 100% against the three Pasteurellaceae in each bovine subpopulation were achieved. The PTA of the PK/PD threshold reflecting the prevention of resistances was greater than 90% up to MPC (mutant prevention concentration) values of 1 μg/ml in pre‐ruminants and ruminants and 0.5 μg/ml in dairy cows.  相似文献   

9.
Cefuroxime axetil pharmacokinetic profile was investigated in 12 Beagle dogs after single intravenous and oral administration of tablets or suspension at a dose of 20 mg/kg, under both fasting and fed conditions. A three-period, three-treatment crossover study (IV, PO under fasting and fed condition) was applied. Blood samples were withdrawn at predetermined times over a 12-hr period. Cefuroxime plasma concentrations were determined by HPLC. Data were analyzed by compartmental analysis. No statistically significant differences were observed between formulations and feeding conditions on PK parameters. Independently of the feeding condition, absorption of cefuroxime axetil after tablet administration was low and erratic. The drug has been quantified in plasma in 3 out of 6 and 5 out of 6 dogs in the fasted and fed groups. For this formulation, the bioavailability (F), peak plasma concentration (Cmax), and area under the concentration–time curve (AUC) of cefuroxime axetil were significantly enhanced (p < .05) by the concomitant ingestion of food (32.97 ± 13.47–14.08 ± 7.79%, 6.30 ± 2.62–2.74 ± 0.66 µg/ml, and 15.75 ± 3.98–7.82 ± 2.76 µg.hr/ml for F, Cmax, and AUC in fed and fasted dogs, respectively), while for cefuroxime axetil suspension, feeding conditions affected only the rate of absorption, as reflected by the significantly shorter absorption half-life (T½(a)) and time to peak concentration (Tmax) (0.55 ± 0.27–1.15 ± 0.19 hr and 1.21 ± 0.22–1.70 ± 0.30 for T½(a) and Tmax in fed and fasted dogs, respectively). For cefuroxime axetil tablets, T > MIC (≤1 µg/ml) was <2 hr in fasted and ≈4 hr in fed animals, and for cefuroxime axetil suspension, T > MIC (≤1 µg/ml) was ≈5 hr and for T >MIC (≤4 µg/ml) was ≈2.5 hr for fasted and fed dogs, respectively. Cefuroxime axetil as a suspension formulation seems to be a better option than tablets. However, its short permanence in plasma could reduce its clinical usefulness in dogs.  相似文献   

10.
The purpose of the present study was to assess the effect of crocin supplementation during oocyte maturation on the antioxidant defence and anti‐apoptotic ability and subsequent developmental competence of porcine oocytes. Oocytes were cultured in media containing 0, 300, 400 or 500 µg/ml of crocin. Upon maturation, the maturation rates, reactive oxygen species (ROS) and glutathione (GSH) levels, mRNA expression of genes (SOD, CAT, GPx, Bcl‐2, BAX and Caspase3), expression of cleaved caspase3 and subsequent embryo cleavage rates were measured. Results indicated that the maturation rate of the 400 µg/ml group was 86.80% (p < 0.01). The ROS concentration of the 500 µg/ml group was the lowest (p < 0.01). The GSH concentration of the 400 µg/ml group was the highest (p < 0.01). The SOD, CAT and GPx mRNA expression levels were the highest in the 300, 400 and 500 µg/ml groups, respectively, with the expression levels of all genes being significantly higher than that of the control group (p < 0.01). The Bcl‐2/BAX mRNA expression ratio in 400 and 500 µg/ml groups significantly higher than other groups and significantly decreased caspase3 expression level (p < 0.01). The expression level of cleaved caspase3 in the 500 µg/ml treatment group was the lowest, significantly lower than that of the control group (p < 0.01). The cleavage rate of the 400 µg/ml group was 62.50% (p < 0.01). These experimental results show that the supplementation of in vitro culture medium with 400 µg/ml of crocin significantly enhanced the antioxidant defence and anti‐apoptotic ability and subsequent cleavage rate of porcine embryo.  相似文献   

11.
The pharmacokinetics of marbofloxacin in pigs were evaluated as a function of dose and animal age following intravenous and intramuscular administration of a 16% solution (Forcyl®). The absolute bioavailability of marbofloxacin as well as the dose proportionality was evaluated in 27‐week‐old fattening pigs. Blood PK and urinary excretion of marbofloxacin were evaluated after a single intramuscular dose of 8 mg/kg in 16‐week‐old male pigs. An additional group of 12‐week‐old weaned piglets was used for the evaluation of age‐related kinetics. The plasma and urine concentration of marbofloxacin was determined using a HPLC method. Pharmacokinetic parameters were calculated using noncompartmental methods. After intravenous administration in 27‐week‐old fattening pigs, the total body clearance was 0.065 L/h·kg. After intramuscular administration to the same animals, the mean observed Cmax was 6.30 μg/mL, and the AUCINF was 115 μg·h/mL. The absolute bioavailability was 91.5%, and dose proportionality was shown within the dose range of 4–16 mg/kg. The renal clearance was about half of the value of the total clearance. The total systemic clearance values significantly decreased as a function of age, being 0.092 L/h·kg and 0.079 L/h·kg in pigs aged 12 and 16 weeks, respectively.  相似文献   

12.
Florfenicol, a structural analog of thiamphenicol, has broad‐spectrum antibacterial activity against gram‐negative and gram‐positive bacteria. This study was conducted to investigate the epidemiological, pharmacokinetic–pharmacodynamic cutoff, and the optimal scheme of florfenicol against Escherichia coli (E. coli) with PK‐PD integrated model in the target infectious tissue. 220 E. coli strains were selected to detect the susceptibility to florfenicol, and a virulent strain P190, whose minimum inhibitory concentration (MIC) was similar to the MIC50 (8 μg/ml), was analyzed for PD study in LB and ileum fluid. The MIC of P190 in the ileum fluid was 0.25 times lower than LB. The ratios of MBC/MIC were four both in the ileum and LB. The characteristics of time‐killing curves also coincided with the MBC determination. The recommended dosages (30 mg/kg·body weight) were orally administrated in healthy pigs, and both plasma and ileum fluid were collected for PK study. The main pharmacokinetics (PK) parameters including AUC24 hr, AUC0–∞, Tmax, T1/2, Cmax, CLb, and Ke were 49.83, 52.33 μg*h/ml, 1.32, 10.58 hr, 9.12 μg/ml, 0.50 L/hr*kg, 0.24 hr?1 and 134.45, 138.71 μg*hr/ml, 2.05, 13.01 hr, 16.57 μg/ml, 0.18 L/hr*kg, 0.14 hr?1 in the serum and ileum fluid, respectively. The optimum doses for bacteriostatic, bactericidal, and elimination activities were 29.81, 34.88, and 36.52 mg/kg for 50% target and 33.95, 39.79, and 42.55 mg/kg for 90% target, respectively. The final sensitive breakpoint was defined as 16 μg/ml. The current data presented provide the optimal regimens (39.79 mg/kg) and susceptible breakpoint (16 μg/ml) for clinical use, but these predicted data should be validated in the clinical practice.  相似文献   

13.
The current study was conducted to investigate the protective efficiency of dietary lycopene (LYC) supplementation on growth performance, intestinal morphology, and digestive enzyme activities aflatoxinB1 (AFB1) challenged broilers. A total of 240 days old Arber across male broiler chicks were randomly allocated in five treatments and six replicates (eight birds per replicate); feed and water were provided ad libitum during the 42 days experiment. The treatment diets were as follows: (i) Basal diet (control), (ii) Basal diet + 100 µg/kg AFB1 contaminated diet, (iii) Basal diet + 100 µg/kg AFB1 + 100 mg/kg LYC1, (iv) Basal diet + 100 µg/kg AFB1 + 200 mg/kg LYC2, and (v) Basal diet + 100 µg/kg AFB1 + 400 mg/kg LYC3. The results showed that the addition of LYC to AFB1 contaminated broiler diets significantly increased (p < .05) average daily gain (ADG) and decreased feed conversion ratio (FCR) compared to the AFB1 diet. AFB1 diet decreased the intestinal villus height (VH) and crypt depth ratio (VCR) while increasing the crypt depth (CD). However, dietary LYC supplemented diets relieved the intestinal morphological alterations. Dietary LYC supplementation (200 and 400 mg/kg) significantly improved (p < .05) intestinal digestive enzyme amylase and lipase activities with AFB1 contaminated diet. These findings suggested that LYC is a promising feed supplement in the broiler industry, alleviating the harmful effects of AFB1.  相似文献   

14.
The aim of this study was to determine the pharmacokinetics and prostaglandin E2 (PGE2) synthesis inhibiting effects of intravenous (IV) and transdermal (TD) flunixin meglumine in eight, adult, female, Huacaya alpacas. A dose of 2.2 mg/kg administered IV and 3.3 mg/kg administered TD using a cross‐over design. Plasma flunixin concentrations were measured by LC‐MS/MS. Prostaglandin E2 concentrations were determined using a commercially available ELISA. Pharmacokinetic (PK) analysis was performed using noncompartmental methods. Plasma PGE2 concentrations decreased after IV flunixin meglumine administration but there was minimal change after TD application. Mean t1/2λz after IV administration was 4.531 hr (range 3.355 to 5.571 hr) resulting from a mean Vz of 570.6 ml/kg (range, 387.3 to 1,142 ml/kg) and plasma clearance of 87.26 ml kg?1 hr?1 (range, 55.45–179.3 ml kg?1 hr?1). The mean Cmax, Tmax and t1/2λz for flunixin following TD administration were 106.4 ng/ml (range, 56.98 to 168.6 ng/ml), 13.57 hr (range, 6.000–34.00 hr) and 24.06 hr (18.63 to 39.5 hr), respectively. The mean bioavailability for TD flunixin was calculated as 25.05%. The mean 80% inhibitory concentration (IC80) of PGE2 by flunixin meglumine was 0.23 µg/ml (range, 0.01 to 1.38 µg/ml). Poor bioavailability and poor suppression of PGE2 identified in this study indicate that TD flunixin meglumine administered at 3.3 mg/kg is not recommended for use in alpacas.  相似文献   

15.
Otitis externa (OE) is a frequently reported disorder in dogs associated with secondary infections by Staphylococcus, Pseudomonas and yeast pathogens. The presence of biofilms may play an important role in the resistance of otic pathogens to antimicrobial agents. Biofilm production of twenty Staphylococcus pseudintermedius and twenty Pseudomonas aeruginosa canine otic isolates was determined quantitatively using a microtiter plate assay, and each isolate was classified as a strong, moderate, weak or nonbiofilm producer. Minimum biofilm eradication concentration (MBEC) of two ionophores (narasin and monensin) and three adjuvants (N‐acetylcysteine (NAC), Tris‐EDTA and disodium EDTA) were investigated spectrophotometrically (OD570nm) and quantitatively (CFU/ml) against selected Staphylococcus and Pseudomonas biofilm cultures. Concurrently, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of planktonic cultures were assessed. 16/20 of the S. pseudintermedius clinical isolates were weak biofilm producers. 19/20 P. aeruginosa clinical isolates produced biofilms and were distributed almost equally as weak, moderate and strong biofilm producers. While significant antibiofilm activity was observed, no MBEC was achieved with narasin or monensin. The MBEC for NAC ranged from 5,000–10,000 µg/ml and from 20,000–80,000 µg/ml against S. pseudintermedius and P. aeruginosa, respectively. Tris‐EDTA eradicated P. aeruginosa biofilms at concentrations ranging from 6,000/1,900 to 12,000/3,800 µg/ml. The MBEC was up to 16‐fold and eightfold higher than the MIC/MBC of NAC and Tris‐EDTA, respectively. Disodium EDTA reduced biofilm growth of both strains at concentrations of 470 µg/ml and higher. It can be concluded that biofilm production is common in pathogens associated with canine OE. NAC and Tris‐EDTA are effective antibiofilm agents in vitro that could be considered for the treatment of biofilm‐associated OE in dogs.  相似文献   

16.
The pharmacokinetics, PK/PD ratios, and Monte Carlo modeling of enrofloxacin HCl‐2H2O (Enro‐C) and its reference preparation (Enro‐R) were determined in cows. Fifty‐four Jersey cows were randomly assigned to six groups receiving a single IM dose of 10, 15, or 20 mg/kg of Enro‐C (Enro‐C10, Enro‐C15, Enro‐C20) or Enro‐R. Serial serum samples were collected and enrofloxacin concentrations quantified. A composite set of minimum inhibitory concentrations (MIC) of Leptospira spp. was utilized to calculate PK/PD ratios: maximum serum concentration/MIC (Cmax/MIC90) and area under the serum vs. time concentration of enrofloxacin/MIC (AUC0‐24/MIC90). Monte Carlo simulations targeted Cmax/MIC = 10 and AUC0‐24/MIC = 125. Mean Cmax obtained were 6.17 and 2.46 μg/ml; 8.75 and 3.54 μg/ml; and 13.89 and 4.25 μg/ml, respectively for Enro‐C and Enro‐R. Cmax/MIC90 ratios were 6.17 and 2.46, 8.75 and 3.54, and 13.89 and 4.25 for Enro‐C and Enro‐R, respectively. Monte Carlo simulations based on Cmax/MIC90 = 10 indicate that only Enro‐C15 and Enro‐C20 may be useful to treat leptospirosis in cows, predicting a success rate ≥95% when MIC50 = 0.5 μg/ml, and ≥80% when MIC90 = 1.0 μg/ml. Although Enro‐C15 and Enro‐C20 may be useful to treat leptospirosis in cattle, clinical trials are necessary to confirm this proposal.  相似文献   

17.
Amoxicillin was administered as a single subcutaneous injection at 12.5 mg/kg to four koalas and changes in amoxicillin plasma concentrations over 24 hr were quantified. Amoxicillin had a relatively low average ± SD maximum plasma concentration (Cmax) of 1.72 ± 0.47 µg/ml; at an average ± SD time to reach Cmax (Tmax) of 2.25 ± 1.26 hr, and an elimination half-life of 4.38 ± 2.40 hr. The pharmacokinetic profile indicated relatively poor subcutaneous absorption. A metabolite was also identified, likely associated with glucuronic acid conjugation. Bacterial growth inhibition assays demonstrated that all plasma samples other than t = 0 hr, inhibited the growth of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213 to some extent. Calculated pharmacokinetic indices were used to predict whether this dose could attain a plasma concentration to inhibit some susceptible Gram-negative and Gram-positive pathogens. It was predicted that a twice daily dose of 12.5 mg/kg would be efficacious to inhibit susceptible bacteria with an amoxicillin minimum inhibitory concentration (MIC) ≤ 0.75 µg/ml such as susceptible Bordetella bronchiseptica, E. coli, Staphylococcus spp. and Streptococcus spp. pathogens.  相似文献   

18.
This study aimed to develop one novel meloxicam (MEL) oil suspension for sustained-release and compare the pharmacokinetic characteristics of it with MEL conventional formulation in pigs after a single intramuscular administration. Six healthy pigs were used for the study by a crossover design in two periods with a withdrawal interval of 14 days. Plasma concentrations of MEL were measured by ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS). Pharmacokinetic parameters were calculated by noncompartmental methods. The difference was statistically significant (p < .05) between MEL oil suspension and MEL conventional formulation in pharmacokinetic parameters of mean residence time (6.16 ± 4.04) hr versus (2.66 ± 0.55) hr, peak plasma concentration (Cmax) (0.82 ± 0.12) µg/ml versus (1.12 ± 0.22) µg/ml, time needed to reach Cmax (Tmax) (2.33 ± 0.82) hr versus (0.59 ± 0.18) hr, and terminal elimination half-life (t1/2λz) (3.74 ± 2.66) hr versus (1.55 ± 0.37) hr. The mean area under the concentration–time curve (AUC0–∝) of MEL oil suspension and MEL conventional formulation was 5.35 and 3.43 hr µg/ml, respectively, with a relative bioavailability of 155.98%. Results of the present study demonstrated that the MEL oil suspension could prolong the effective time of drugs in blood, thereby reducing the frequency of administration on a course of treatment. Therefore, the novel MEL oil suspension seems to be of great value in veterinary clinical application.  相似文献   

19.
Fluoroquinolone antibacterial drugs are currently used in reptilian medicine because of their broad spectrum of activity including the most frequent pathogens of these species. The disposition kinetics of marbofloxacin (MBX) at a single dose of 2 mg/kg were determined in healthy red-eared sliders after intravenous (IV) and intramuscular (IM) administration. The influence of renal portal system on the bioavailability of the drug was investigated by using forelimb and hindlimb as IM injection sites. Apparent volume of distribution at steady-state (Vss) and systemic clearance (Cl) of marbofloxacin after IV administration were estimated to be 48.21 ± 5.42 ml/kg and 23.38 ± 2.90 ml/hr·kg, respectively. The absolute bioavailabilities after IM route were 45.96% (forelimb) and 52.09% (hindlimb). The lack of statistically significant differences in most of the pharmacokinetic parameters after the two IM injection sites suggests a negligible influence of renal portal system in clinical use of MBX, although the Cmax after IMfore administration is advantageous, having into account the concentration-dependent action of this antibiotic. The absence of visible adverse reactions in the animals and the advantageous pharmacokinetic properties suggest the possibility of its safe and effective clinical use in red-eared sliders.  相似文献   

20.
This study evaluates changes in the pharmacokinetic behavior of a single oral dose of florfenicol in rainbow trouts experimentally infected with Lactococcus garvieae or Streptococcus iniae. One hundred and fifty fish were randomly divided into three equal groups: 1—healthy fish, 2—fish inoculated with S. iniae (2.87 × 107 CFU/ml, i.p.), and 3—fish inoculated with L. garvieae (6.8 × 105 CFU/ml, i.p.). Florfenicol was administered to all groups at 15 mg/kg by oral gavage. Blood sampling was performed at 0, 2, 3, 6, 8, 12, 24, 48, 72, and 120 hr after drug administration to each group, and plasma concentration of florfenicol was assayed by HPLC method. The MICs of florfenicol were 1.2 μg/ml and 5 μg/ml against L. garviae and S. iniae, respectively. Healthy fish showed higher values for most of the PK/PD parameters as compared to fish infected with L. garvieae which was reversed in fish infected with S. iniae. Fish infected with L. garvieae showed decreased relative bioavailability accompanied by increased volume of distribution at steady‐state (Vdss) and total body clearance (ClB). Infection with S. iniae increased the peak concentration of drug after administration (Cmax) and decreased elimination half‐life (T1/2 β), central compartment volume (Vc), and Vdss. In conclusion, infection with these bacteria can affect the pharmacokinetic behavior of florfenicol in rainbow trouts as shown by decreased bioavailability and increased total body clearance and volume of distribution in L. garvieae infection and decreased volume of distribution accompanied by increased Cmax in S. iniae‐infected fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号