首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The pharmacokinetics (PK) and pharmacodynamics (PD) of marbofloxacin (MBF) were determined in six healthy female goats of age 1.00–1.25 years after repeated administration of MBF. The MBF was administered intramuscularly (IM) at 2 mg kg?1 day?1 for 5 days. Plasma concentrations of MBF were determined by high‐performance liquid chromatography, and PK parameters were obtained using noncompartmental analysis. The MBF concentrations peaked at 1 hr, and peak concentration (Cmax) was 1.760 µg/ml on day 1 and 1.817 µg/ml on day 5. Repeated dosing of MBF caused no significant change in PK parameters except area under curve (AUC) between day 1 (AUC0–∞D1 = 7.67 ± 0.719 µg × hr/ml) and day 5 (AUC0‐∞D5 = 8.70 ± 0.857 µg × hr/ml). A slight difference in mean residence time between 1st and 5th day of administration and accumulation index (AI = 1.13 ± 0.017) suggested lack of drug accumulation following repeated IM administration up to 5 days. Minimum inhibitory concentration (MIC) demonstrated that Escherichia coli (MIC = 0.04 µg/ml) and Pasturella multocida (MIC = 0.05 µg/ml) were highly sensitive to MBF. Time‐kill kinetics demonstrated rapid and concentration‐dependent activity of MBF against these pathogens. PK/PD integration of data for E. coli and P. multocida, using efficacy indices: Cmax/MIC and AUC0–24hr/MIC, suggested that IM administration of MBF at a dose of 2 mg kg?1 day?1 is appropriate to treat infections caused by E. coli. However, a dose of 5 mg kg?1 day?1 is recommended to treat pneumonia caused by P. multocida in goats. The study indicated that MBF can be used repeatedly at dosage of 2 mg/kg in goats without risk of drug accumulation up to 5 days.  相似文献   

2.
Antimicrobial resistance is a worldwide public health threat; hence, current trends tend to reduce antimicrobial use in food‐producing animals and to monitor resistance in primary production. This study aimed at evaluating the impact of antimicrobial use and production system on swine farms in the antimicrobial resistance of Campylobacter, Salmonella and Staphylococcus, the main zoonotic pathogens in pig herds, in order to assess their potential value as sentinel microorganisms in antimicrobial resistance surveillance schemes. A total of 37 Spanish swine farms, 18 intensive and 19 organic/extensive farms, were included in the study. The antimicrobial resistance of 104 Campylobacter, 84 Staphylococcus and 17 Salmonella isolates was evaluated using Sensititre plates following the EUCAST guidelines. Mixed‐effects logistic regression was used to evaluate the influence of production system and antimicrobial use in resistant and multidrug‐resistant (MDR) phenotypes to the antimicrobials tested. The results showed that antimicrobial use was higher (p < .001) on intensive farms than on organic/extensive farms. MDR in Campylobacter and Staphylococcus was lower on organic/extensive farms (OR < .01p < .001). Antimicrobial resistance in Campylobacter and Staphylococcus isolates was, also for most of the antimicrobials studied, significantly higher in intensive than organic/extensive pig herds. Tetracycline resistance was associated with total antimicrobial consumption in both microbial species (p < .05), and some cross‐associations between distinct antimicrobial substances were established, for instance resistance to erythromycin was associated with macrolide and phenicol consumption. No significant associations could be established for Salmonella isolates. The results demonstrate the link between antimicrobial consumption and resistance in zoonotic bacteria and evidence the potential value of using Campylobacter and Staphylococcus species in monitoring activities aimed at determining the impact of antimicrobials use/reduction on the occurrence and spread of antimicrobial resistance.  相似文献   

3.
Increasing reports of multidrug‐resistant bacterial infections in animals has created a need for novel antimicrobial agents that do not promote cross‐resistance to critically important antimicrobial classes used in human medicine. In response to the recent emergence of antimicrobial resistance in several bovine mastitis pathogens, in vitro antimicrobial susceptibility was determined for four polyether ionophores (lasalocid, monensin, narasin and salinomycin) against Staphylococcus spp. and Streptococcus spp. isolated from clinical cases. In addition, erythrocyte haemolysis and WST ‐1 cell proliferation assays were used to assess in vitro mammalian cell cytotoxicity and biofilm susceptibility testing was performed using the minimum biofilm eradication concentration (MBEC ?) biofilm assay. Lasalocid, monensin, narasin and salinomycin exhibited bacteriostatic antimicrobial activity against all pathogens tested, including methicillin‐resistant staphylococci, with MIC 90 values <16 μg/ml. Narasin and monensin displayed the least toxicity against mammalian cell lines and all compounds significantly reduced viable cell numbers in a Staphylococcus aureus biofilm. Based on in vitro characterization, all four ionophores offer potentially novel treatments against bovine mastitis but in vivo studies will be essential to determine whether acceptable safety and efficacy is present following intramammary administration.  相似文献   

4.
Minimum bactericidal concentrations (MBCs) of a commercial ear antiseptic containing chlorhexidine 0.15% and Tris–EDTA (Otodine®) were determined by broth microdilution for 150 isolates representing the most common pathogens associated with canine otitis. The microorganisms were classified into three groups according to their levels of susceptibility. The most susceptible group included Staphylococcus pseudintermedius, Malassezia pachydermatis, Streptococcus canis and Corynebacterium auriscanis, which were generally killed by 1 : 64 dilution of the antiseptic product (MBC = 23/0.8 μg/mL of chlorhexidine/Tris–EDTA). The most resistant organism was Proteus mirabilis, which survived up to 1 : 8 dilution of the product (MBC = 375/12 μg/mL). Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus displayed intermediate MBCs ranging between 188/6 and 47/1.5 μg/mL. Interestingly, S. pseudintermedius was more susceptible than S. aureus, and no significant difference was observed between meticillin‐resistant and meticillin‐susceptible isolates within each species, indicating that antiseptic use is unlikely to co‐select for meticillin resistance. Although the concentrations required for killing (MBCs) varied considerably with microorganism type, the combination of chlorhexidine 0.15% and Tris–EDTA was active against all the pathogens most commonly involved in canine otitis.  相似文献   

5.
Pharmacokinetics and pharmacodynamics of alfaxalone was performed in mallard ducks (Anas platyrhynchos) after single bolus injections of 10 mg/kg administered intramuscularly (IM; n = 10) or intravenously (IV; n = 10), in a randomized cross‐over design with a washout period between doses. Mean (±SD) Cmax following IM injection was 1.6 (±0.8) µg/ml with Tmax at 15.0 (±10.5) min. Area under the curve (AUC) was 84.66 and 104.58 min*mg/ml following IV and IM administration, respectively. Volume of distribution (VD) after IV dose was 3.0 L/kg. The mean plasma clearance after 10 mg/kg IV was 139.5 (±67.9) ml min?1 kg?1. Elimination half‐lives (mean [±SD]) were 15.0 and 16.1 (±3.0) min following IV and IM administration, respectively. Mean bioavailability at 10 mg/kg IM was 108.6%. None of the ducks achieved a sufficient anesthetic depth for invasive procedures, such as surgery, to be performed. Heart and respiratory rates measured after administration remained stable, but many ducks were hyperexcitable during recovery. Based on sedation levels and duration, alfaxalone administered at dosages of 10 mg/kg IV or IM in mallard ducks does not induce clinically acceptable anesthesia.  相似文献   

6.
Chemical stability and in vitro bactericidal efficacy of 0.9% enrofloxacin‐compounded solutions were evaluated following storage at room temperature for 28 days. Chemical stability of enrofloxacin was determined by high‐performance liquid chromatography (HPLC) in five compounded solutions, including sterile water. Bactericidal efficacy was determined by spiral plating serial 10‐fold dilutions of bacteria and solutions followed by colony counts. Tris–EDTA [TrizEDTA® (TE)], Tris–EDTA and 0.15% chlorhexidine [TrizChlor® (TC)], 2.5% lactic acid, 0.1% salicylic acid and 0.1% parachlorometaxylenol [Epi‐Otic (EO)], and 0.1% free salicylic acid, 0.1% parachlorometaxylenol and 0.5% EDTA [Epi‐Otic Advanced (EA)] were used. High‐performance liquid chromatography was carried out with one‐step liquid/liquid extraction to detect and quantify enrofloxacin stability. Mean recoveries for compounded samples run in triplicate at 28 days were 97.7% (TE), 99.9% (TC), 98.1% (EO) and 97.8% (EA). Kruskal–Wallis analysis showed no significant difference in the percentage recovery (H = 0.0539, df = 3, P = 0.9967). American Type Culture Collection strains of Staphylococcus pseudintermedius and Pseudomonas aeruginosa were used to evaluate in vitro efficacy following 30 min incubation on days 0, 14 and 28. Consistent in vitro bactericidal efficacy of all compounded solutions, indicated by killing >2.3 × 107 colony‐forming units/mL, was seen; however, bactericidal efficacy decreased for compounded TC on day 14. Pseudomonas aeruginosa was more sensitive to the ear cleaners and enrofloxacin than S. pseudintermedius. The HPLC and in vitro data suggest that 0.9% enrofloxacin compounded with sterile water, TE, EO and EA maintains chemical stability and bactericidal efficacy for 28 days.  相似文献   

7.
Ketoprofen is a nonsteroidal anti‐inflammatory and analgesic agent that nonselectively inhibits cyclooxygenase, with both COX‐1 and COX‐2 inhibition. Recent studies on COX receptor expression in reptiles suggest that nonselective COX inhibitors may be more appropriate than more selective inhibitors in some reptiles, but few pharmacokinetic studies are available. The goal of this study was to determine single‐ and multidose (three consecutive days) pharmacokinetics of racemic ketoprofen administered intravenously and intramuscularly at 2 mg/kg in healthy juvenile loggerhead turtles (Caretta caretta). The S‐isomer is the predominant isomer in loggerhead sea turtles, similar to most mammals, despite administration of a 50:50 racemic mixture. Multidose ketoprofen administration demonstrated no bioaccumulation; therefore, once‐daily dosing will not require dose adjustment over time. S‐isomer pharmacokinetic parameters determined in this study were Cmax of 10.1 μg/ml by IM injection, C0 of 13.4 μg/ml by IV injection, AUC of 44.7 or 69.4 μg*hr/ml by IM or IV injection, respectively, and T½ of 2.8 or 3.6 hr by IM or IV injection, respectively. Total ketoprofen plasma concentrations were maintained for at least 12 hr above concentrations determined to be effective for rats and humans. A dose of 2 mg/kg either IM or IV every 24 hr is likely appropriate for loggerhead turtles.  相似文献   

8.
The aims of this study were to establish optimal doses of doxycycline (dox) against Haemophilus parasuis on the basis of pharmacokinetic–pharmacodynamic (PK‐PD) integration modeling. The infected model was established by intranasal inoculation of organism in pigs and confirmed by clinical signs, blood biochemistry, and microscopic examinations. The recommended dose (20 mg/kg b.w.) was administered in pigs through intramuscular routes for PK studies. The area under the concentration 0‐ to 24‐hr curve (AUC0–24), elimination half‐life (T½ke), and mean residence time (MRT) of dox in healthy and H. parasuis‐infected pigs were 55.51 ± 5.72 versus 57.10 ± 4.89 μg·hr/ml, 8.28 ± 0.91 versus 9.80 ± 2.38 hr, and 8.43 ± 0.27 versus 8.79 ± 0.18 hr, respectively. The minimal inhibitory concentration (MIC) of dox against 40 H. parasuis isolates was conducted through broth microdilution method, the corresponding MIC50 and MIC90 were 0.25 and 1 μg/ml, respectively. The Ex vivo growth inhibition data suggested that dox exhibited a concentration‐dependent killing mechanism. Based on the observed AUC24 hr/MIC values by modeling PK‐PD data in H. parasuis‐infected pigs, the doses predicted to obtain bacteriostatic, bactericidal, and elimination effects for H. parasuis over 24 hr were 5.25, 8.55, and 10.37 mg/kg for the 50% target attainment rate (TAR), and 7.26, 13.82, and 18.17 mg/kg for 90% TAR, respectively. This study provided a more optimized alternative for clinical use and demonstrated that the dosage 20 mg/kg of dox by intramuscular administration could have an effective bactericidal activity against H. parasuis.  相似文献   

9.
The purpose of the study was to test the hypothesis that the dietary oils with different content of n‐3 polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) affect plasma lipid level in rats in a different degree. The diets with 6% of fish oil (FO) and Schizochytrium microalga oil (SchO; EPA+DHA content in the diets 9.5 + 12.3 and 2.6 + 29.5% of the sum of total fatty acids, respectively) were used; the diet with 6% of safflower oil (high content of n‐6 PUFA linoleic acid, 65.5%; EPA+DHA content 0.7 + 0.9%) was used as a control. The difference between FO and SchO was established only in the case of plasma triacylglycerol (TAG) level: plasma TAG of the FO‐fed rats did not differ from the control rats (p > 0.05), while SchO decreased (p < 0.05) plasma TAG to 46% of the control. On the other hand, FO and SchO decreased (p < 0.05) total plasma cholesterol (TC) in rats in the same extent, to 73% of the control. Regarding the underlying mechanisms for the TC decrease, both SchO and FO up‐regulated hepatic Insig‐1 gene (181 and 133% of the control; p < 0.05), which tended (p = 0.15 and p = 0.19 respectively) to decrease the amount of hepatic nSREBP‐2 protein (61 and 66% of the control). However, neither SchO nor FO influenced hepatic 3‐hydroxy‐3‐methyl‐glutaryl‐CoA reductase gene expression (p > 0.05); SchO (but not FO) increased (p < 0.05) low‐density lipoprotein receptor mRNA in the liver. It was concluded that the decrease of total plasma cholesterol might be caused by an increased cholesterol uptake from plasma into the cells (in the case of SchO), but also by other (in the present study not tested) mechanisms.  相似文献   

10.
The present study assessed the effects of intramammary infusion of Bifidobacterium breve (B. breve) on mastitis‐causing pathogens and on the somatic cell counts (SCC) in lactating cows with chronic subclinical mastitis. The bacteriological cure rates of 42 quarters from 42 cows infected with Staphylococcus aureus, Corynebacterium bovis, coagulase‐negative staphylococci, and environmental streptococci were 18.2% (2/11), 14.3% (1/7), 58.8% (10/17), and 28.6% (2/7), respectively, on day 14 after B. breve infusion. In a second trial, B. breve was infused into 18 quarters from 18 cows with chronic subclinical mastitis from which pathogens had not been isolated; the rates of quarters showing SCC > 50 × 104 cells/ml prior to B. breve infusion that decreased to < 30 × 104 cells/ml after infusion were significantly (p < .01) increased to 61.1% (11/18) on day 14 compared to that prior to infusion (0/18). The intramammary infusion of B. breve appears to be a non‐antibiotic approach for elimination of minor pathogens and decreasing SCC in quarters with chronic subclinical mastitis in dairy cows.  相似文献   

11.
Florfenicol, a structural analog of thiamphenicol, has broad‐spectrum antibacterial activity against gram‐negative and gram‐positive bacteria. This study was conducted to investigate the epidemiological, pharmacokinetic–pharmacodynamic cutoff, and the optimal scheme of florfenicol against Escherichia coli (E. coli) with PK‐PD integrated model in the target infectious tissue. 220 E. coli strains were selected to detect the susceptibility to florfenicol, and a virulent strain P190, whose minimum inhibitory concentration (MIC) was similar to the MIC50 (8 μg/ml), was analyzed for PD study in LB and ileum fluid. The MIC of P190 in the ileum fluid was 0.25 times lower than LB. The ratios of MBC/MIC were four both in the ileum and LB. The characteristics of time‐killing curves also coincided with the MBC determination. The recommended dosages (30 mg/kg·body weight) were orally administrated in healthy pigs, and both plasma and ileum fluid were collected for PK study. The main pharmacokinetics (PK) parameters including AUC24 hr, AUC0–∞, Tmax, T1/2, Cmax, CLb, and Ke were 49.83, 52.33 μg*h/ml, 1.32, 10.58 hr, 9.12 μg/ml, 0.50 L/hr*kg, 0.24 hr?1 and 134.45, 138.71 μg*hr/ml, 2.05, 13.01 hr, 16.57 μg/ml, 0.18 L/hr*kg, 0.14 hr?1 in the serum and ileum fluid, respectively. The optimum doses for bacteriostatic, bactericidal, and elimination activities were 29.81, 34.88, and 36.52 mg/kg for 50% target and 33.95, 39.79, and 42.55 mg/kg for 90% target, respectively. The final sensitive breakpoint was defined as 16 μg/ml. The current data presented provide the optimal regimens (39.79 mg/kg) and susceptible breakpoint (16 μg/ml) for clinical use, but these predicted data should be validated in the clinical practice.  相似文献   

12.
This study evaluated the effect of the protocatechuic acid (PCA) as the sole antioxidant in the base medium for in vitro culture of ovine secondary follicles. Secondary follicles (200‐230 μm) were isolated and cultured in α‐minimal essential medium supplemented with BSA, insulin, glutamine and hypoxanthine (α‐MEM: antioxidant‐free medium) or α‐MEM also added by transferrin, selenium and ascorbic acid (α‐MEM+: with antioxidant) or α‐MEM added by PCA (56.25; 112.5; 225; 450; or 900 μg/ml). Moreover, after culture, oocytes were matured and the chromatin configuration and DNA fragmentation were evaluated. After 12 days, the treatment containing 56.25 μg/ml PCA showed higher percentage of normal follicles than control medium or the other treatments (p < .05), except for 900 μg/ml PCA (p > .05). The antrum formation was significantly higher in treatments containing 56.25, 112.5 or 900 μg/ml PCA, compared to the α‐MEM and similar (p > .05) to the other treatments. The rates of fully grown oocytes (≥110 μm) were similar (p > .05) among all treatments containing PCA and α‐MEM+, and those were superior (p < .05) than α‐MEM, except for 450 μg/ml PCA (p > .05). GSH levels and mitochondrial activity were higher (p < .05) in α‐MEM+ than in α‐MEM and similar (p > .05) to all PCA treatments. The rates of meiotic resumption and DNA fragmentation were similar (p > .05) among α‐MEM+ and 56.25 μg/ml PCA. In conclusion, PCA at 56.25 μg/ml as the sole antioxidant added to the medium for ovine isolated secondary follicle culture maintains follicular survival, GSH and active mitochondria levels, meiotic developmental competence and DNA integrity of cultured oocytes.  相似文献   

13.
Two consecutive experiments were carried out to determine efficacy of Megasphaera elsdenii inoculation in alleviation of subacute ruminal acidosis (SARA). In the first experiment, SARA was induced by feeding corn‐ and wheat‐based diets (20%, 40%, 60% and 80% of TMR, DM basis) in six ruminally cannulated heifers. Continuous pH was obtained using data loggers embedded in rumen. In corn (80%)‐ and wheat (60%)‐based diets ruminal pH ranged from 5.2 to 5.6 for 7.77 and 5.93 hr. In the second experiment (5 day), M. elsdenii (200 ml; 2.4 x 1010 cfu/ml) was inoculated during the first two days. During the SARA induction period, M. elsdenii and S. bovis in rumen liquor were more abundant in wheat‐based feeding (7.97 and 8.77) than in corn‐based feeding (7.06 and 7.95 per ml, log basis; p < 0.0001 for both). M. elsdenii inoculation increased total volatile fatty acids (VFA) concentration when corn‐based diet was fed, whereas it decreased total VFA concentration when wheat‐based diet was fed (p < 0.004). There was a decrease in the propionic acid proportion (24.04%–19.08%; p < 0.002), whereas no alteration in lactate and ammonia concentrations was observed. M. elsdenii inoculation increased protozoa count (from 5.39 to 5.55 per ml, log basis; p < 0.009) and decreased S. bovis count (from 9.18 to 7.95 per ml, log basis; p < 0.0001). The results suggest that M. elsdenii inoculation may help prevent SARA depending on dietary grain through altering rumen flora as reflected by a decrease in S. bovis count and an increase in protozoa count.  相似文献   

14.
The purpose of the present study was to assess the effect of crocin supplementation during oocyte maturation on the antioxidant defence and anti‐apoptotic ability and subsequent developmental competence of porcine oocytes. Oocytes were cultured in media containing 0, 300, 400 or 500 µg/ml of crocin. Upon maturation, the maturation rates, reactive oxygen species (ROS) and glutathione (GSH) levels, mRNA expression of genes (SOD, CAT, GPx, Bcl‐2, BAX and Caspase3), expression of cleaved caspase3 and subsequent embryo cleavage rates were measured. Results indicated that the maturation rate of the 400 µg/ml group was 86.80% (p < 0.01). The ROS concentration of the 500 µg/ml group was the lowest (p < 0.01). The GSH concentration of the 400 µg/ml group was the highest (p < 0.01). The SOD, CAT and GPx mRNA expression levels were the highest in the 300, 400 and 500 µg/ml groups, respectively, with the expression levels of all genes being significantly higher than that of the control group (p < 0.01). The Bcl‐2/BAX mRNA expression ratio in 400 and 500 µg/ml groups significantly higher than other groups and significantly decreased caspase3 expression level (p < 0.01). The expression level of cleaved caspase3 in the 500 µg/ml treatment group was the lowest, significantly lower than that of the control group (p < 0.01). The cleavage rate of the 400 µg/ml group was 62.50% (p < 0.01). These experimental results show that the supplementation of in vitro culture medium with 400 µg/ml of crocin significantly enhanced the antioxidant defence and anti‐apoptotic ability and subsequent cleavage rate of porcine embryo.  相似文献   

15.
The GMM sheep is a carrier of Booroola fecundity (FecB) gene, which produces the twins and triplets in one lambing. The homozygous carrier GMM (FecBBB), non‐carrier GMM and Malpura (FecB++) ewes were synchronized by progesterone sponges, and the plasma progesterone concentration was measured by RIA. The results showed that the progesterone concentration did not differ significantly (p > .05) in homozygous carrier GMM (5.74 ± 1.2 ng/ml), non‐carrier GMM (5.42 ± 1.4 ng/ml) and non‐carrier Malpura ewes (5.67 ± 1.5 ng/ml). Further, quantitative expression of BMP factors/receptors and SMAD signalling genes were analysed in the ovaries of sheep by qRT‐PCR. The study showed that the expression of BMP2 was slightly higher (p > .05) in carrier GMM than that of non‐carrier GMM, but it was almost similar to Malpura ewes. Expression of BMP4 and BMP7 was significantly higher (p < .001; p < .05) in carrier GMM than that of non‐carrier GMM and Malpura ewes. Although BMP6 expression was higher (p > .05) in carrier GMM than that of non‐carrier GMM, but lower (p > .05) than the Malpura ewes. Expression of BMP15 (p < .05), GDF5 (p < .01) and GDF9 (p < .05) was significantly higher in carrier GMM than non‐carrier GMM ewes. Surprisingly, BMPR1B expression was significantly higher (p < .001) in non‐carrier GMM and Malpura than the carrier GMM ewes, while TGFβRI did not differ significantly (p > .05) among both GMM genotypes. On the other hand, expression of BMPR1A (p > .05) and BMPRII (p < .05) was higher in carrier GMM than the non‐carrier GMM, but significantly lower (p < .001) than the Malpura ewes. It was interesting to note that the expression of SMAD1 (p > .05), SMAD2 (p < .001), SMAD3 (p < .05), SMAD4 (p < .001), SMAD5 (p < .001) and SMAD8 (p < .001) was lower in the carrier GMM than that of non‐carrier GMM ewes. It is concluded that the FecB mutation alters the expression of BMPR1B and SMAD signalling genes in the ovaries of homozygous carrier GMM ewes.  相似文献   

16.
A study of 120 days was undertaken to ascertain the effect of mannan‐oligosaccharides (MOS) and Lactobacillus acidophilus supplementation on growth performance, nutrient utilization and faecal characteristics in Murrah buffalo calves. Twenty Murrah buffalo calves of 5–7 days old and 31 ± 2.0 kg of body weight (BW) were randomly assigned into four groups. Group I served as the control (CON) in which only basal diet (concentrate mixture and green fodder) was provided, without any supplementation. Mannan‐oligosaccharides at 4 g/calf/day were supplemented as prebiotic to Group II (PRE), whereas Group III (PRO) received Lactobacillus acidophilus in the form of fermented milk as probiotic at 200 ml/calf/day having 10CFU/ml and Group IV (SYN) was supplemented with both MOS and Lactobacillus acidophilus as synbiotic at similar dose. Final BW (kg), dry matter intake, average daily gain, feed conversion efficiency and structural growth measurements were improved (p < .05) in the treatment groups compared to control. Digestibility of neutral detergent fibre was higher (p < .05) in SYN followed by PRE and PRO than control. The faecal lactobacilli and bifidobacterium population was higher (p < .05) in all the supplemented groups with a concomitant reduction in faecal coliform count as compared to control. Faecal ammonia, lactate and pH were also altered favourably (p < .05) in all the supplemented groups as compared to CON. The faecal volatile fatty acids were higher (p < .05) in PRE, PRO and SYN group than CON. The incorporation of MOS and Lactobacillus acidophilus in diet either individually or in combination as synbiotic has the potential to improve the performance and faecal characteristics in Murrah buffalo calves; however, the observed responses among the treatment groups were more evident in the synbiotic fed group compared to individual supplementation of MOS and Lactobacillus acidophilus.  相似文献   

17.
Pasteurella multocida is the causative agent of fowl cholera, and florfenicol (FF) has potent antibacterial activity against P. multocida and is widely used in the poultry industry. In this study, we established a P. multocida infection model in ducks and studied the pharmacokinetics of FF in serum and lung tissues after oral administration of 30 mg/kg bodyweight. The maximum concentrations reached (Cmax) were lower in infected ducks (13.88 ± 2.70 μg/ml) vs. healthy control animals (17.86 ± 1.57 μg/ml). In contrast, the mean residence time (MRT: 2.35 ± 0.13 vs. 2.27 ± 0.18 hr) and elimination half‐life (T½β: 1.63 ± 0.08 vs. 1.57 ± 0.12 hr) were similar for healthy and diseased animals, respectively. As a result, the area under the concentration curve for 0–12 hr (AUC0–12 hr) for FF in healthy ducks was significantly greater than that in infected ducks (49.47 ± 5.31 vs. 34.52 ± 8.29 μg hr/ml). The pharmacokinetic differences of FF in lung tissues between the two groups correlated with the serum pharmacokinetic differences. The Cmax and AUC0–12 hr values of lung tissue in healthy ducks were higher than those in diseased ducks. The concentration of FF in lung tissues was approximately 1.2‐fold higher than that in serum both in infected and healthy ducks indicating that FF is effective in treating respiratory tract infections in ducks.  相似文献   

18.
An experiment was conducted to evaluate the effects of B. subtilis RX7 and B. subtilis B2A on growth performance, blood profiles, intestinal Salmonella population, noxious gas emission, organ weight and breast meat quality of broilers under S. typhimurium challenge. A total of 120, one‐day‐old Ross 308 male broiler chicks were assigned to four dietary treatments, composed of six replications, with five birds per replication, for 10 day. The dietary treatment groups were negative control (NC; no antibiotic, no B. subtilis), positive control (PC; NC + 0.1% virginiamycin), B. subtilis RX7 (NC + 0.1% B. subtilis RX7 1.0 × 10cfu/g) and B. subtilis B2A (NC + 0.1% B. subtilis 1.0 × 109 cfu/g). All birds were orally challenged with 2 ml suspension, containing 104 cfu/ml of S. typhimurium KCCM 40253. Results indicated that the body weight gain, feed intake and feed conversion did not differ, among all comparative treatments. Serum haptoglobin concentration was lower in Bacillus treatments (RX7 + B2A) than the NC treatment (p < 0.05). Intestinal and excreta Salmonella number, and excreta ammonia gas emission in the PC treatment or Bacillus treatments, was lower than the NC treatment (p < 0.05). Breast pH, colour and water‐holding capacity were not affected by supplementation of B. subtilis RX7 and B2A. However, drip loss at 1 day post‐slaughter from birds fed with B. subtilis RX7 and B2A decreased, compared with the positive control birds (p < 0.05). Relative gizzard weights of birds fed B. subtilis RX7 and B2A were significantly higher than the NC birds under S. typhimurium challenge. It is concluded from the results that B. subtilis RX7 and B2A increased the gizzard weight and decreased the intestinal and excreta Salmonella population and excreta ammonia gas, and drip loss of breast meat after being stored for 1 day, under stress caused by the S. typhimurium challenge.  相似文献   

19.
This study aimed to investigate the effect of dietary supplementation with Lactobacillus plantarum and Bacillus subtilis on growth performance, apparent nutrient digestibility and stress‐related indicators in dairy calves. Twenty‐four neonatal Holstein calves were randomly allocated to three treatments: a basal diet with no supplementation (control), the basal diet supplemented with 1.7 × 1010 CFU per head per day (CFU/h.d) of L. plantarum GF103 (LB group) or the basal diet supplemented with a mixture of L. plantarum GF103 (1.7 × 1010 CFU/h.d) and B. subtilis B27 (1.7 × 108 CFU/h.d) (LBS group). Dry matter intake (DMI), average daily gain (ADG), feed conversation ratio (FCR), apparent digestibility of nutrients and stress‐related indicators were measured in this trail. The result indicated that no significant differences were observed in DMI or ADG (p > 0.05), but the FCR was improved in the LB group over the first 12 weeks (p > 0.05). The apparent digestibility of nutrients was not altered by probiotics in week 6 (p > 0.05), but the apparent digestibility of total phosphorus was significantly greater in the LB and LBS groups in week 8 (p > 0.05); additionally, an increase in the apparent digestibility of crude protein was detected in the LBS group (p > 0.05). Oral administration of L. plantarum alone improved the T‐lymphocyte transformation rate on days 58 and 62 (p > 0.05), while adding the mixture of L. plantarum and B. subtilis increased the T‐lymphocyte transformation rate (p > 0.05) but decreased the content of cortisol on day 58 (p > 0.05). No significant differences were detected between the LB and LBS groups in growth performance, apparent digestibility of nutrients and stress‐related indicators (p > 0.05). The results suggested that oral administration of L. plantarum improved growth performance, nutrient digestibility and relieved weaning stress in calves, but no additional effect was obtained by supplementation with B. subtilis.  相似文献   

20.
Increase in the number of small‐scale backyard poultry flocks in the USA has substantially increased human‐to‐live poultry contact, leading to increased public health risks of the transmission of multi‐drug resistant (MDR) zoonotic and food‐borne bacteria. The objective of this study was to detect the occurrence of Salmonella and MDR Gram‐negative bacteria (GNB) in the backyard poultry flock environment. A total of 34 backyard poultry flocks in Washington State (WA) were sampled. From each flock, one composite coop sample and three drag swabs from nest floor, waterer‐feeder, and a random site with visible faecal smearing, respectively, were collected. The samples were processed for isolation of Salmonella and other fermenting and non‐fermenting GNB under ceftiofur selection. Each isolate was identified to species level using MALDI‐TOFF and tested for resistance against 16 antibiotics belonging to eight antibiotic classes. Salmonella serovar 1,4,[5],12:i:‐ was isolated from one (3%) out of 34 flocks. Additionally, a total of 133 ceftiofur resistant (CefR) GNB including Escherichia coli (53), Acinetobacter spp. (45), Pseudomonas spp. (22), Achromobacter spp. (8), Bordetella trematum (1), Hafnia alvei (1), Ochrobactrum intermedium (1), Raoultella ornithinolytica (1), and Stenotrophomonas maltophilia (1) were isolated. Of these, 110 (82%) isolates displayed MDR. Each flock was found positive for the presence of one or more CefR GNB. Several MDR E. coli (n = 15) were identified as extended‐spectrum β‐lactamase (ESBL) positive. Carbapenem resistance was detected in non‐fermenting GNB including Acinetobacter spp. (n = 20), Pseudomonas spp. (n = 11) and Stenotrophomonas maltophila (n = 1). ESBL positive E. coli and carbapenem resistant non‐fermenting GNB are widespread in the backyard poultry flock environment in WA State. These GNB are known to cause opportunistic infections, especially in immunocompromised hosts. Better understanding of the ecology and epidemiology of these GNB in the backyard poultry flock settings is needed to identify potential risks of transmission to people in proximity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号