首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Eight adult female dairy goats received one subcutaneous administration of tulathromycin at a dosage of 2.5 mg/kg body weight. Blood and milk samples were assayed for tulathromycin and the common fragment of tulathromycin, respectively, using liquid chromatography/mass spectrometry. Pharmacokinetic disposition of tulathromycin was analyzed by a noncompartmental approach. Mean plasma pharmacokinetic parameters (±SD) following single‐dose administration of tulathromycin were as follows: Cmax (121.54 ± 19.01 ng/mL); Tmax (12 ± 12–24 h); area under the curve AUC0→∞ (8324.54 ± 1706.56 ng·h/mL); terminal‐phase rate constant λz (0.01 ± 0.002 h−1); and terminal‐phase rate constant half‐life t1/2λz (67.20 h; harmonic). Mean milk pharmacokinetic parameters (±SD) following 45 days of sampling were as follows: Cmax (1594 ± 379.23 ng/mL); Tmax (12 ± 12–36 h); AUC0→∞ (72,250.51 ± 18,909.57 ng·h/mL); λz (0.005 ± 0.001 h−1); and t1/2λz (155.28 h; harmonic). All goats had injection‐site reactions that diminished in size over time. The conclusions from this study were that tulathromycin residues are detectable in milk samples from adult goats for at least 45 days following subcutaneous administration, this therapeutic option should be reserved for cases where other treatment options have failed, and goat milk should be withheld from the human food chain for at least 45 days following tulathromycin administration.  相似文献   

2.
The pharmacokinetic properties of three formulations of vitacoxib were investigated in horses. To describe plasma concentrations and characterize the pharmacokinetics, 6 healthy adult Chinese Mongolian horses were administered a single dose of 0.1 mg/kg bodyweight intravenous (i.v.), oral paste, or oral tablet vitacoxib in a 3-way, randomized, parallel design. Blood samples were collected prior to and at various times up to 72 hr postadministration. Plasma vitacoxib concentrations were quantified using UPLC-MS/MS, and pharmacokinetic parameters were calculated using noncompartmental analysis. No complications resulting from the vitacoxib administration were noted on subsequent administrations, and all procedures were tolerated well by the horses throughout the study. The elimination half-life (T1/2λz) was 4.24 ± 1.98 hr (i.v.), 8.77 ± 0.91 hr (oral paste), and 8.12 ± 4.24 hr (oral tablet), respectively. Maximum plasma concentration (Cmax) was 28.61 ± 9.29 ng/ml (oral paste) and 19.64 ± 9.26 ng/ml (oral tablet), respectively. Area under the concentration-versus-time curve (AUClast) was 336 ± 229 ng hr/ml (i.v.), 221 ± 94 ng hr/ml (oral paste), and 203 ± 139 ng hr/ml, respectively. The results showed statistically significant differences between the 2 oral vitacoxib groups in Tmax value. T1/2λz (hr), AUClast (ng hr/ml), and MRT (hr) were significantly different between i.v. and oral groups. The longer half-life observed following oral administration was consistent with the flip-flop phenomenon.  相似文献   

3.
The purpose of this study was to determine the pharmacokinetic interaction between ivermectin (0.4 mg/kg) and praziquantel (10 mg/kg) administered either alone or co‐administered to dogs after oral treatment. Twelve healthy cross‐bred dogs (weighing 18–21 kg, aged 1–3 years) were allocated randomly into two groups of six dogs (four females, two males) each. In first group, the tablet forms of praziquantel and ivermectin were administered using a crossover design with a 15‐day washout period, respectively. Second group received tablet form of ivermectin plus praziquantel. The plasma concentrations of ivermectin and praziquantel were determined by high‐performance liquid chromatography using a fluorescence and ultraviolet detector, respectively. The pharmacokinetic parameters of ivermectin following oral alone‐administration were as follows: elimination half‐life (t1/2λz) 110 ± 11.06 hr, area under the plasma concentration–time curve (AUC0–∞) 7,805 ± 1,768 hr.ng/ml, maximum concentration (Cmax) 137 ± 48.09 ng/ml, and time to reach Cmax (Tmax) 14.0 ± 4.90 hr. The pharmacokinetic parameters of praziquantel following oral alone‐administration were as follows: t1/2λz 7.39 ± 3.86 hr, AUC0–∞ 4,301 ± 1,253 hr.ng/ml, Cmax 897 ± 245 ng/ml, and Tmax 5.33 ± 0.82 hr. The pharmacokinetics of ivermectin and praziquantel were not changed, except Tmax of praziquantel in the combined group. In conclusion, the combined formulation of ivermectin and praziquantel can be preferred in the treatment and prevention of diseases caused by susceptible parasites in dogs because no pharmacokinetic interaction was determined between them.  相似文献   

4.
South Africa currently loses over 1000 white rhinoceros (Ceratotherium simum) each year to poaching incidents, and numbers of severely injured victims found alive have increased dramatically. However, little is known about the antimicrobial treatment of wounds in rhinoceros. This study explores the applicability of enrofloxacin for rhinoceros through the use of pharmacokinetic‐pharmacodynamic modelling. The pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin were evaluated in five white rhinoceros after intravenous (i.v.) and after successive i.v. and oral administration of 12.5 mg/kg enrofloxacin. After i.v. administration, the half‐life, area under the curve (AUCtot), clearance and the volume of distribution were 12.41 ± 2.62 hr, 64.5 ± 14.44 μg ml?1 hr?1, 0.19 ± 0.04 L h?1 kg?1, and 2.09 ± 0.48 L/kg, respectively. Ciprofloxacin reached 26.42 ± 0.05% of the enrofloxacin plasma concentration. After combined i.v. and oral enrofloxacin administration oral bioavailability was 33.30 ± 38.33%. After i.v. enrofloxacin administration, the efficacy marker AUC24: MIC exceeded the recommended ratio of 125 against bacteria with an MIC of 0.5 μg/mL. Subsequent intravenous and oral enrofloxacin administration resulted in a low Cmax: MIC ratio of 3.1. The results suggest that intravenous administration of injectable enrofloxacin could be a useful drug with bactericidal properties in rhinoceros. However, the maintenance of the drug plasma concentration at a bactericidal level through additional per os administration of 10% oral solution of enrofloxacin indicated for the use in chickens, turkeys and rabbits does not seem feasible.  相似文献   

5.
Altrenogest, a synthetic progestogen, is characterized by its estrus synchronization in mares, ewes, sows, and gilts. To investigate the pharmacokinetic profile and evaluate its accumulation in gilts, 18 oral doses of 20 mg altrenogest/gilt/day were given to eight healthy gilts at an interval of 24 hr. Plasma samples were collected, and altrenogest was determined by ultra‐high‐performance liquid chromatography with mass spectrometry. WinNonlin 6.4 software was used to calculate the pharmacokinetic parameters through noncompartmental model analysis. After the first administration (D 1), the pharmacokinetic parameters, including Tmax, Cmax, and the elimination half‐life (T1/2λz), were similar to those observed after the final administration (D 18). However, the mean residence time at D 1 was significantly lower than D 18. As a whole, the mean steady‐state plasma concentration (Css), degree fluctuation (DF), accumulation factor (Rac), and area under the plasma concentration–time curve in steady state (AUCss) were 22.69 ± 6.15 ng/ml, 270.64 ± 42.51%, 1.53 ± 0.23, and 544.63 ± 147.49 ng hr/ml, respectively. These results showed that after 18 consecutive days of oral administration of altrenogest, plasma concentrations of altrenogest had a certain degree of fluctuation, without significant accumulations.  相似文献   

6.
This study aimed to develop one novel meloxicam (MEL) oil suspension for sustained-release and compare the pharmacokinetic characteristics of it with MEL conventional formulation in pigs after a single intramuscular administration. Six healthy pigs were used for the study by a crossover design in two periods with a withdrawal interval of 14 days. Plasma concentrations of MEL were measured by ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS). Pharmacokinetic parameters were calculated by noncompartmental methods. The difference was statistically significant (p < .05) between MEL oil suspension and MEL conventional formulation in pharmacokinetic parameters of mean residence time (6.16 ± 4.04) hr versus (2.66 ± 0.55) hr, peak plasma concentration (Cmax) (0.82 ± 0.12) µg/ml versus (1.12 ± 0.22) µg/ml, time needed to reach Cmax (Tmax) (2.33 ± 0.82) hr versus (0.59 ± 0.18) hr, and terminal elimination half-life (t1/2λz) (3.74 ± 2.66) hr versus (1.55 ± 0.37) hr. The mean area under the concentration–time curve (AUC0–∝) of MEL oil suspension and MEL conventional formulation was 5.35 and 3.43 hr µg/ml, respectively, with a relative bioavailability of 155.98%. Results of the present study demonstrated that the MEL oil suspension could prolong the effective time of drugs in blood, thereby reducing the frequency of administration on a course of treatment. Therefore, the novel MEL oil suspension seems to be of great value in veterinary clinical application.  相似文献   

7.
The objective of this study was to evaluate the pharmacokinetic characteristics of enrofloxacin (ENR) injectable in situ gel we developed in dogs following a single intramuscular (i.m.) administration. Twelve healthy dogs were randomly divided into two groups (six dogs per group), then administrated a single 20 mg/kg body weight (b.w.) ENR injectable in situ gel and a single 5 mg/kg b.w. ENR conventional injection, respectively. High‐performance liquid chromatography (HPLC) was used to determine ENR plasma concentrations. The pharmacokinetic parameters of ENR injectable in situ gel and conventional injection in dogs are as follows: MRT (mean residence time) (45.59 ± 14.05) h verse (11.40 ± 1.64) h, AUC (area under the blood concentration vs. time curve) (28.66 ± 15.41) μg·h/mL verse (11.06 ± 3.90) μg·h/mL, cmax (maximal concentration) (1.59 ± 0.35) μg/mL verse (1.46 ± 0.07) μg/mL, tmax (time needed to reach cmax) (1.25 ± 1.37) h verse (1.40 ± 0.55) h, t1/2λz (terminal elimination half‐life) (40.27 ± 17.79) h verse (10.32 ± 0.97) h. The results demonstrated that the in situ forming gel system could increase dosing interval of ENR and thus reduced dosing frequency during long‐term treatment. Therefore, the ENR injectable in situ gel seems to be worth popularizing in veterinary clinical application.  相似文献   

8.
For most bacterial lung infections, the concentration of unbound antimicrobial agent in lung interstitial fluid has been considered as the gold standard for estimating the antibacterial efficacy. In this study, the pharmacokinetics of florfenicol (FF) in porcine lung interstitial fluid was investigated after single intramuscular administration at two different doses (20 and 50 mg/kg). Twelve pigs underwent thoracotomy under general anesthesia. Then, the CMA/30 probe was implanted into the lung and perfused at 1 μL/min. The microdialysis (MD) samples were collected on a preset schedule and analyzed by high‐performance liquid chromatography (HPLC). Noncompartmental pharmacokinetic analysis was performed. FF exhibited rapid distribution and slow elimination in porcine lung interstitial fluid. The main pharmacokinetic parameters at 20 and 50 mg/kg were 4.88 ± 0.54 and 10.36 ± 2.52 μg/mL for the maximum concentration (Cmax), 3.25 ± 0.32 and 3.50 ± 0.27 h for the time to Cmax (Tmax), 9.47 ± 6.84 and 7.75 ± 3.23 h for the half‐life (t1/2), 0.10 ± 0.06 and 0.10 ± 0.04 1/h for the terminal elimination rate constant (λz), 13.85 ± 7.97 and 11.42 ± 2.79 h for the mean residence time (MRT), 37.77 ± 8.13 and 71.15 ± 16.99 h·μg/mL for the area under the curve from time 0 to 18.25 h (AUC0–18.25), and 51.18 ± 20.11 and 88.78 ± 27.58 h·μg/mL for the area under the curve from time 0 to infinity (AUC0–∞), respectively.  相似文献   

9.
Devil's claw is used for the treatment of inflammatory symptoms and degenerative disorders in horses since many years, but without the substantive pharmacokinetic data. The pharmacokinetic parameters of harpagoside, the main active constituent of Harpagophytum procumbens DC ex Meisn., were evaluated in equine plasma after administration of Harpagophytum extract FB 8858 in an open, single‐dose, two‐treatment, two‐period, randomized cross‐over design. Six horses received a single dose of Harpagophytum extract, corresponding to 5 mg/kg BM harpagoside, and after 7 days washout period, 10 mg/kg BM harpagoside via nasogastric tube. Plasma samples at certain time points (before and 0–24 hr after administration) were collected, cleaned up by solid‐phase extraction, and harpagoside concentrations were determined by LC‐MS/MS using apigenin‐7‐glucoside as internal standard. Plasma concentration‐time data and relevant parameters were described by noncompartmental model through PKSolver software. Harpagoside could be detected up to 9 hr after administration. Cmax was found at 25.59 and 55.46 ng/ml, t1/2 at 2.53 and 2.32 hr, respectively, and tmax at 1 hr in both trials. AUC0–inf was 70.46 and 117.85 ng hr ml?1, respectively. A proportional relationship between dose, Cmax and AUC was observed. Distribution (Vz/F) was 259.04 and 283.83 L/kg and clearance (CL/F) 70.96 and 84.86 L hr?1 kg?1, respectively. Treatment of horses with Harpagophytum extract did not cause any clinically detectable side effects.  相似文献   

10.
Eprinomectin is only available as a topically applied anthelmintic for dairy cattle. To determine whether eprinomectin can be applied as an injectable formulation in dairy cattle, a novel injectable formulation was developed and was subcutaneously delivered to four lactating dairy cattle at a dose rate of 0.2 mg/ kg. Plasma and milk samples were collected. The concentrations of eprinomectin in all samples were determined by HPLC. The peak plasma concentration (Cmax)of 44.0±24.2 ng/ml occurred 39±19.3 h after subcutaneous administration, equivalent to the Cmax (43.76±18.23 ng/ml) previously reported for dairy cattle after a pour-on administration of 0.5 mg/kg eprinomectin. The area under the plasma concentration–time curve (AUC) after subcutaneous administration was 7354±1861 (ng h)/ml, higher than that obtained after pour-on delivery (5737.68±412.80 (ng h)/ml). The mean residence time (MRT) of the drug in plasma was 211±55.2 h. Eprinomectin was detected in the milk at the second sampling time. The concentration of drug in milk was parallel to that in plasma, with a milk to plasma ratio of 0.16±0.01. The highest detected concentration of eprinomectin in milk was 9.0 ng/ml, below the maximum residue limit (MRL) of eprinomectin in milk established by the Joint FAO/WHO Expert Committee on Food Additives in 2000. The amount of eprinomectin recovered in the milk during this trial was 0.39%±0.08% of the total administered dose. This study demonstrates that subcutaneous administration of eprinomectin led to higher bioavailability and a lower dose than a pour-on application, and that an injectable formulation of eprinomectin may be applied in dairy cattle with a zero withdrawal period.  相似文献   

11.
The horse milk gains increasing interest as a food product for sensitive consumers, such as children with food allergies or elderly people. We investigated the plasma and milk disposition, faecal excretion and efficacy of per os ivermectin (IVM) and pour‐on eprinomectin (EPM) in horses. Ten mares were divided into two groups. The equine paste formulation of IVM and bovine pour‐on formulation of EPM were administered orally and topically at dosage of 0.2 and 0.5 mg/kg bodyweight. Blood, milk and faecal samples were analysed using high‐performance liquid chromatography. The plasma concentration and persistence of IVM were significantly greater and longer compared with those of EPM. Surprisingly, EPM displayed a much higher disposition rate into milk (AUCmilk/plasma: 0.48) than IVM (AUCmilk/plasma: 0.19). IVM exhibited significantly higher faecal excretion (AUCfaeces: 7148.54 ng·d/g) but shorter faecal persistence (MRTfaeces: 1.17 days) compared with EPM (AUCfaeces: 42.43 ng·d/g and MRTfaeces: 3.29 days). Faecal strongyle egg counts (EPG) were performed before and at weekly intervals after treatment. IVM reduced the EPG by 96–100% for up to 8 weeks, whereas the reduction in the EPM group varied from 78 to 99%. In conclusion, due to the relatively low excretion in milk, EPM and IVM may be used safely in lactating mares if their milk is used for human consumption. Nevertheless, much lower plasma and faecal availabilities of EPM could result in subtherapeutic concentrations, which may increase the risk of drug resistance in nematodes after pour‐on EPM administration compared with per os IVM.  相似文献   

12.
Alfaxalone (3α‐hydroxy‐5α‐pregnane‐11, 20‐dione) is a neuroactive steroid with anaesthetic properties and a wide margin of safety. The pharmacokinetic properties of alfaxalone administered intravenously and intraperitoneally in rats (n = 28) were investigated. Mean t1/2elim for 2 and 5 mg/kg i.v. was 16.2 and 17.6 min, respectively, but could not be estimated for IP dosing, due to sustained plasma levels for up to 60 min after injection. Clp for i.v. injection was calculated at 57.8 ± 23.6 and 54.3 ± 6.8 mL/min/kg, which were 24.5% and 23% of cardiac output, respectively. The observed Cmax was 3.0 mg/L for IP administration, and 2.2 ± 0.9 and 5.2 ± 1.3 mg/L for 2 and 5 mg/kg i.v. administration, respectively. AUC0–60 was 96.2 min·mg/L for IP dosing. The relative bioavailability for IP dosing was 26% and 28% compared to i.v. dosing. Differences in t1/2elim and Clp from previous pharmacokinetic studies in rats are likely due to variations in alfaxalone formulation rather than sex differences. Alfaxan® given IP caused sustained levels of alfaxalone, no apnoea and longer sleep times than i.v. dosing, although immobilization was not induced in 30% of rats given Alfaxan® IP. A pharmacodynamic study of the effects of combining IP injection of Alfaxan® with other premedication agents is worthwhile, to determine whether improved anaesthesia induction could ultimately provide an alternative anaesthetic regimen for rats.  相似文献   

13.
The objective of this study was to determine the pharmacokinetics of tolfenamic acid (TA) following intravenous (IV) administration at doses of 2 and 4 mg/kg in goats. In this study, six healthy goats were used. TA was administered intravenously to each goat at 2 and 4 mg/kg doses in a cross-over pharmacokinetic design with a 15-day washout period. Plasma concentrations of TA were analyzed using the high performance liquid chromatography with ultraviolet detector, and pharmacokinetic parameters were assigned by noncompartmental analysis. Following IV administration at dose of 2 mg/kg, area under the concentration–time curve (AUC0−∞), elimination half-life (t1/2ʎz), total clearance (ClT) and volume of distribution at steady state (Vdss) were 6.64 ± 0.81 hr*µg/ml, 1.57 ± 0.14 hr, 0.30 ± 0.04 L h-1 kg-1 and 0.40 ± 0.05 L/kg, respectively. After the administration of TA at a dose of 4 mg/kg showed prolonged t1/2ʎz, increased dose-normalized AUC0-∞, and decreased ClT. In goats, TA at 4 mg/kg dose can be administered wider dose intervals compared to the 2 mg/kg dose. However, further studies are needed to determine the effect of different doses on the clinical efficacy of TA in goats.  相似文献   

14.
The purpose of this study was to evaluate the pharmacokinetics of oral amitriptyline in horses. Oral amitriptyline (1 mg/kg) was administered to six horses. Blood samples were collected from jugular and lateral thoracic vein at predetermined times from 0 to 24 hr after administration. Plasma concentrations were determined by high-performance liquid chromatography and analyzed using noncompartmental methods. Pharmacodynamic parameters including heart rate, respiration rate, and intestinal motility were evaluated, and electrocardiographic examinations were performed in all subjects. The mean maximum plasma concentration (Cmax) of amitriptyline was 30.7 ng/ml, time to maximum plasma concentration (Tmax) 1–2 hr, elimination half-life (t1/2) 17.2 hr, area under plasma concentration–time curve (AUC) 487.4 ng ml−1 hr−1, apparent clearance (Cl/F) 2.6 L hr−1 kg−1, and apparent volume of distribution (Vd/F) 60.1 L/kg. Jugular vein sampling overestimated the amount of amitriptyline absorbed and should not be used to study uptake following oral administration. Heart rate and intestinal motility showed significant variation (p < .05). Electrocardiography did not provide conclusive results. Further studies are required to discern if multiple dose treatment would take the drug to steady state as expected, consequently increasing plasma concentrations.  相似文献   

15.
The present study aims were to determine the profiles of changes in progesterone (P4) and 17-β-estradiol (E2) in the peripheral blood of Markhoz goat (Iranian Angora) during estrous cycle, gestation, and parturition throughout natural breeding season. Gestation length averaged 145.3 ± 0.8 days, and the litter size was 1.1 ± 0.1. Birth weight ranged 2.4–2.8 and 1.5–2.5 kg in male and female kids, respectively. The mean estrous cycle lengths were 20.3 ± 0.4 and 20.9 ± 0.4 days for PGF-induced and natural cycles, respectively. Blood sampling was carried out daily during estrous cycle and weekly during gestation till parturition. E2 attained higher level (24.7 ± 2.15 pg mL−1) at estrus phase and dropped down to the lower level (18.80 ± 1.16 pg mL−1) within 3 to 4 days post-estrus. Concomitantly, P4 started to increase from the mean basal value of 0.5 ± 0.03 ng mL−1 on day 0 to 6.88 ± 0.95 ng mL−1 on day 6 of estrous cycle and reached the peak value of 12.8 ± 0.61 ng mL−1 on day 12. From day 15, a decline was observed in P4 values till the end of the cycle. P4 remained at lower concentrations for 20–50 days of gestation, then increased and reached to its maximum level (13.51 ± 0.279 ng mL−1) in week 15 and returned again to its basal values within 1–2 weeks before parturition. The results will be discussed in terms of the usage of steroid hormone profile in several assisted reproductive technologies.  相似文献   

16.
The aim of this study was to determine the changes in the pharmacokinetics of meloxicam in goat kids who were castrated following the administration of xylazine. Six goat kids were used for the study. The study was performed in two periods according to a longitudinal study, with a 15-day washout period between periods. In the first period (Control group), 1 mg/kg meloxicam was administered by i.v. route to kids. In the second period (Castration group), the kids were sedated with 0.3 mg/kg xylazine and castration was performed following meloxicam administration. Plasma meloxicam concentration was analyzed using HPLC-UV, and pharmacokinetic parameters were calculated by noncompartmental model. In the control group following the administration of meloxicam, mean elimination half-life (t1/2ʎz), area under the concentration–time curve (AUC0−∞), total body clearance (ClT), and volume of distribution at steady-state (Vdss) were 13.50 ± 0.62 hr, 41.10 ± 2.86 hr µg/ml, 24.43 ± 1.75 ml hr−1 kg−1, and 0.45 ± 0.03 L/kg, respectively. In the castration group, the t1/2ʎz of meloxicam prolonged, AUC0−∞ increased, and ClT and Vdss decreased. In conclusion, the excretion of meloxicam from the body slowed and the t1/2ʎz was prolonged in the castrated goat kids following xylazine administration. However, there is a need to determine the pharmacodynamics of meloxicam in castrated goat kids.  相似文献   

17.
The present study aimed to determine the pharmacokinetic profiles of ceftiofur (as measured by ceftiofur and its active metabolites concentrations) in a small-size dog breed, Peekapoo, following a single intravenous or subcutaneous injection of ceftiofur sodium. The study population comprised of five clinically healthy Peekapoo dogs with an average body weight (BW) of 3.4 kg. Each dog received either intravenous or subcutaneous injection, both at 5 mg/kg BW (calculated as pure ceftiofur). Plasma samples were collected at different time points after the administration. Ceftiofur and its active metabolites were extracted from plasma samples, derivatized, and further quantified by high-performance liquid chromatography. The concentrations versus time data were subjected to noncompartmental analysis to obtain the pharmacokinetic parameters. The terminal half-life (t1/2λz) was calculated as 7.40 ± 0.79 and 7.91 ± 1.53 hr following intravenous and subcutaneous injections, respectively. After intravenous treatment, the total body clearance (Cl) and volume of distribution at steady-state (VSS) were determined as 39.91 ± 4.04 ml hr−1 kg−1 and 345.71 ± 28.66 ml/kg, respectively. After subcutaneous injection, the peak concentration (Cmax; 10.50 ± 0.22 μg/ml) was observed at 3.2 ± 1.1 hr, and the absorption half-life (t1/2ka) and absolute bioavailability (F) were calculated as 0.74 ± 0.23 hr and 91.70%±7.34%, respectively. The pharmacokinetic profiles of ceftiofur and its related metabolites demonstrated their quick and excellent absorption after subcutaneous administration, in addition to poor distribution and slow elimination in Peekapoo dogs. Based on the time of concentration above minimum inhibitory concentration (T > MIC) values calculated here, an intravenous or subcutaneous dose at 5 mg/kg of ceftiofur sodium once every 12 hr is predicted to be effective for treating canine bacteria with a MIC value of ≤4.0 μg/ml.  相似文献   

18.
The pharmacokinetics of afoxolaner and milbemycin oxime (A3 and A4 forms) in dogs were evaluated following the oral administration of NexGard Spectra ® (Merial), a fixed combination chewable formulation of these two active pharmaceutical ingredients. Absorption of actives was rapid at levels that provide the minimum effective doses of 2.5 mg/kg and 0.5 mg/kg of afoxolaner and milbemycin oxime, respectively. The time to maximum afoxolaner plasma concentrations (tmax) was 2–4 h. The milbemycin tmax was 1–2 h. The terminal plasma half‐life (t1/2) and the oral bioavailability were 14 ± 3 days and 88.3% for afoxolaner, 1.6 ± 0.4 days and 80.5% for milbemycin oxime A3 and 3.3 ± 1.4 days and 65.1% for milbemycin oxime A4. The volume of distribution (Vd) and systemic clearance (Cls) were determined following an IV dose of afoxolaner or milbemycin oxime. The Vd was 2.6 ± 0.6, 2.7 ± 0.4 and 2.6 ± 0.6 L/kg for afoxolaner, milbemycin oxime A3 and milbemycin oxime A4, respectively. The Cls was 5.0 ± 1.2, 75 ± 22 and 41 ± 12 mL/h/kg for afoxolaner, milbemycin oxime A3 and milbemycin oxime A4, respectively. The pharmacokinetic profile for the combination of afoxolaner and milbemycin oxime supports the rapid onset and a sustained efficacy for afoxolaner against ectoparasites and the known endoparasitic activity of milbemycin oxime.  相似文献   

19.
Ivermectin (IVM) is one of the most widely used antiparasitic drugs worldwide and has become the drug of choice for anthelmintic and tick treatment in beef cattle production. It is known that pharmacokinetic parameters are fundamental to the rational use of a drug and food safety and these parameters are influenced by different factors. The aim of this study was to evaluate the pharmacokinetic profile of IVM in Bos indicus, Bos taurus, and crossbreed cattle (B. indicus × B. taurus) kept under same field conditions and the possible impacts of sex and IVM formulation (1% and 3.15%). It was observed that IVM concentration was significantly affected by breed. The plasma concentrations of IVM, AUC, Cmax, and t1/2β were significantly higher in B. indicus compared to B. taurus. Crossbreed animals showed an intermediate profile between European and Indian cattle. No alteration in pharmacokinetics parameters was detected when comparing different gender. Concerning the pharmacokinetic data of IVM formulation, it was verified that Tmax, AUC, and t1/2β were higher in 3.15% IVM animals than those from 1% IVM formulation. The results clearly indicated that the IVM plasma concentrations in B. indicus were higher than that in B. taurus.  相似文献   

20.
The objective of this study was to evaluate the pharmacokinetic properties and physiologic effects of a single oral dose of alprazolam in horses. Seven adult female horses received an oral administration of alprazolam at a dosage of 0.04 mg/kg body weight. Blood samples were collected at various time points and assayed for alprazolam and its metabolite, α‐hydroxyalprazolam, using liquid chromatography/mass spectrometry. Pharmacokinetic disposition of alprazolam was analyzed by a one‐compartmental approach. Mean plasma pharmacokinetic parameters (±SD) following single‐dose administration of alprazolam were as follows: Cmax 14.76 ± 3.72 ng/mL and area under the curve (AUC0–∞) 358.77 ± 76.26 ng·h/mL. Median (range) Tmax was 3 h (1–12 h). Alpha‐hydroxyalprazolam concentrations were detected in each horse, although concentrations were low (Cmax 1.36 ± 0.28 ng/mL). Repeat physical examinations and assessment of the degree of sedation and ataxia were performed every 12 h to evaluate for adverse effects. Oral alprazolam tablets were absorbed in adult horses and no clinically relevant adverse events were observed. Further evaluation of repeated dosing and safety of administration of alprazolam to horses is warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号