首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ObjectiveTo determine which class of opioid alone or in conjunction with other anesthetic drugs causes post-anesthetic hyperthermia in cats.Study designProspective, randomized, crossover study.AnimalsEight adult, healthy, cats (four spayed females and four castrated males weighing 3.8 ± 0.6 kg).MethodsEach cat was instrumented with a wireless thermistor in the abdominal cavity. Temperature in all phases was recorded every 5 minutes for 5 hours. Population body temperature (PBT) was recorded for ~8 days. Baseline body temperature is the final 24 hours of the PBT. All injectable drugs were given intramuscularly. The cats were administered drugs in four phases: 1) hydromorphone (H) 0.05, 0.1, or 0.2 mg kg?1; 2) morphine (M) (0.5 mg kg?1), buprenorphine (BUP) (0.02 mg kg?1), or butorphanol (BUT) (0.2 mg kg?1); 3) ketamine (K) (5 mg kg?1) or ketamine (5 mg kg?1) plus hydromorphone (0.1 mg kg?1) (KH); 4) isoflurane in oxygen for 1 hour. Fifteen minutes prior to inhalant anesthetic, cats received either no premed (I), hydromorphone (0.1 mg kg?1) (IH), or hydromorphone (0.1 mg kg?1) plus ketamine (5 mg kg?1) (IHK).ResultsMean PBT for all unmedicated cats was 38.9 ± 0.6 °C (102.0 ± 1 °F). The temperature of cats administered all doses of hydromorphone increased from baseline (p < 0.03) All four opioids (H, M, BUP and BUT) studied increased body temperature compared with baseline (p < 0.005). A significant difference was observed between baseline temperature values and those in treatment KH (p < 0.03). Following recovery from anesthesia, temperature in treatments IH and IHK was different from baseline (p < 0.002).Conclusions and clinical relevanceAll of the opioids tested, alone or in combination with ketamine or isoflurane, caused an increase in body temperature. The increase seen was mild to moderate (<40.1 °C (104.2 °F) and self limiting.  相似文献   

2.
ObjectiveTo determine the pharmacokinetics and pharmacodynamics of high-concentration formulation of buprenorphine (1.8 mg mL–1; Simbadol) following subcutaneous (SC) administration in horses.Study designProspective, randomized, crossover trial.AnimalsA group of six healthy adult horses weighing 521–602 kg.MethodsOn three occasions, Simbadol (0.005 mg kg–1; treatment S5), (0.0025 mg kg–1; treatment S2.5) or saline (treatment SAL) were administered SC at least 7 days apart in random order. Electrical nociceptive threshold (ENT) measured on the neck region, physiologic variables, locomotor activity, degree of restlessness and presence of excitatory signs were measured at baseline and for up to 48 hours after injection. Blood was collected for pharmacokinetic analysis at the same time intervals and plasma buprenorphine concentration (Cp) measured using liquid chromatography–tandem mass spectrometry.ResultsBuprenorphine was quantifiable in all horses from 15 minutes after administration up to 8–12 hours. ENT was significantly increased in treatment S2.5 compared with treatment SAL at 0.75–6 hours after treatment. Increase in locomotor activity and compulsive behavior were recorded in all horses after Simbadol, and degree of restlessness was significantly higher in treatment S5 than SAL for a sustained time. Gastrointestinal motility significantly decreased in all horses after Simbadol and returned to baseline by 16 hours after treatment.Conclusions and clinical relevanceIn horses, SC Simbadol was rapidly absorbed and Cp decreased rapidly. Side effects commonly seen in horses after opioids were observed in both Simbadol treatments, but degree of opioid-induced excitement lasted significantly longer in treatment S5. Simbadol (0.0025 mg kg–1) SC has the potential to be used clinically to treat pain in horses. However, at this dose, duration of antinociceptive effects was not longer than that reported for conventional buprenorphine, and side effects, including reduction in gastrointestinal motility and increased locomotor activity, were documented.  相似文献   

3.
ObjectivesTo determine the physiologic and behavioral effects and pharmacokinetic profile of hydromorphone administered intravenously (IV) to horses.Study designProspective, randomized, crossover study.AnimalsA group of six adult healthy horses weighing 585.2 ± 58.7 kg.MethodsEach horse was administered IV hydromorphone (0.025 mg kg–1; treatment H0.025), hydromorphone (0.05 mg kg–1; treatment H0.05) or 0.9% saline in random order with a 7 day washout period. For each treatment, physiologic, hematologic, abdominal borborygmi scores and behavioral data were recorded over 5 hours and fecal output was totaled over 24 hours. Data were analyzed using repeated measures anova with significance at p < 0.05. Blood samples were collected in treatment H0.05 for quantification of plasma hydromorphone and hydromorphone-3-glucuronide and subsequent pharmacokinetic parameter calculation.ResultsHydromorphone administration resulted in a dose-dependent increase in heart rate (HR) and systolic arterial pressure (SAP). HR and SAP were 59 ± 17 beats minute–1 and 230 ± 27 mmHg, respectively, in treatment H0.05 at 5 minutes after administration. No clinically relevant changes in respiratory rate, arterial gases or temperature were observed. The borborygmi scores in both hydromorphone treatments were lower than baseline values for 2 hours. Fecal output did not differ among treatments and no evidence of abdominal discomfort was observed. Recorded behaviors did not differ among treatments. For hydromorphone, mean ± standard deviation for volume of distribution at steady state, total systemic clearance and area under the curve until the last measured concentration were 1.00 ± 0.29 L kg–1, 106 ± 21 mL minute–1 kg–1 and 8.0 ± 1.5 ng hour mL–1, respectively.Conclusions and clinical relevanceHydromorphone administered IV to healthy horses increased HR and SAP, decreased abdominal borborygmi and did not affect fecal output.  相似文献   

4.
ObjectiveTo compare the antinociceptive effects of morphine administered via cervical epidural catheter to intravenously administered morphine using a thermal threshold (TT) testing model in healthy adult horses.Study designProspective, randomized, blinded experimental study.AnimalsA total of six university-owned adult horses.MethodsHorses were instrumented with a cervical (C1–C2) epidural catheter and TT testing device with probes at withers and thoracic limb coronary bands. All horses underwent three TT testing cycles including cervical epidural morphine administration (treatment EpiM; 0.1 mg kg–1), systemic morphine administration (treatment SystM; 0.1 mg kg–1) and no morphine administration (treatment Control). Baseline TT was established prior to treatments, and TT was tested at 15, 30, 60, 90, 120, 150, 180, 240, 300, 360, 420, 480, 600 and 720 minutes following treatment. Horses underwent a 5 day washout period between treatments and the order of treatment was randomized. Differences between treatments were analyzed with repeated measures anova.ResultsSystemic and epidural morphine administration resulted in significantly higher TT values compared with baseline and control treatment. The duration of effect was significantly longer in treatment EpiM (10–12 hours) than in treatment SystM (1.5–2.0 hours). Horses in treatment EpiM had significantly higher TT values at time points 180–600 minutes (withers) and 300–600 minutes (coronary band) than horses in treatment SystM.Conclusions and clinical relevanceCervical epidural administration of morphine provided antinociceptive effects as measured by increased TT for 10–12 hours compared with 1.5–2.0 hours for intravenously administered morphine. No complications or adverse effects were noticed following epidural placement of a C1–C2 catheter and administration of morphine. The use of a cervical epidural catheter can be considered for analgesia administration in treatment of thoracic limb and cervical pain in the horse.  相似文献   

5.

Objective

To evaluate the onset, magnitude and duration of thermal antinociception after oral administration of two doses of tapentadol in cats.

Study design

Prospective, randomized, blinded, experimental study.

Animals

Six healthy adult cats weighing 4.4 ± 0.4 kg.

Methods

Skin temperature (ST) and thermal threshold (TT) were evaluated using a wireless TT device up to 12 hours after treatment. Treatments included placebo (PBO, 50 mg dextrose anhydrase orally), buprenorphine (BUP, 0.02 mg kg?1) administered intramuscularly, low-dose tapentadol (LowTAP, 25 mg orally; mean 5.7 mg kg?1) and high-dose tapentadol (HighTAP, 50 mg orally; mean 11.4 mg kg?1) in a blinded crossover design with 7 day intervals. Statistical analysis was performed using anova with appropriate post hoc test (p ≤ 0.05).

Results

Salivation was observed immediately following 11 out of 12 treatments with tapentadol. The ST was significantly increased at various time points in the opioid treatments. Hyperthermia (≥ 39.5 °C) was not observed. Baseline TT was 45.4 ± 1.4 °C for all treatments. Maximum TT values were 48.8 ± 4.8 °C at 1 hour in LowTAP, 48.5 ± 3.0 °C at 2 hours in HighTAP and 50.2 ± 5.3 °C at 1 hour in BUP. TT significantly increased after LowTAP at 1 hour, after HighTAP at 1–2 hours, and after BUP at 1–2 hours compared with baseline values. TTs were significantly increased in BUP at 1–2 hours compared with PBO.

Conclusion and clinical relevance

Oral administration of tapentadol increased ST and TT in cats. The durations of thermal antinociception were similar between HighTAP and BUP, both of which were twice as long as that in LowTAP. Studies of different formulations may be necessary before tapentadol can be accepted into feline practice.  相似文献   

6.
ObjectiveTo describe the pharmacokinetics of buprenorphine in dogs following administration of a high-concentration formulation of buprenorphine.Study designProspective, randomized, crossover study.AnimalsA total of six healthy male intact Beagle dogs, aged 9–13 months and weighing 10.3 ± 1.4 kg (mean ± standard deviation).MethodsDogs were randomized to be administered buprenorphine (0.12 mg kg–1; Simbadol, 1.8 mg mL–1) via the intravenous (lateral saphenous) or subcutaneous (dorsal interscapular) route followed by the alternative route of administration after a 14 day interval. Blood was sampled before administration and at set times up to 72 hours after injection. Plasma buprenorphine concentration was measured using liquid chromatography–tandem mass spectrometry.ResultsA three-compartment model with zero or biphasic rapid and slow first-order input in (intravenous or subcutaneous data, respectively) and first-order elimination from the central compartment best fitted the data. The rapid first-order input accounted for 63% of the dosage absorption. Typical values (% interindividual variability) for the three compartment volumes were 900 (33), 2425 (not estimated) and 6360 (28) mL kg–1. The metabolic and two distribution clearances were 25.7 (21), 107.5 (74) and 5.7 (61) mL minute–1 kg–1. The absorption half-life for the fast absorption phase was 8.9 minutes with a 0.7 (103) minute delay. The absorption half-life for the slow absorption phase was 347 minutes with a 226 (42) minute delay. Median (range) bioavailability calculated from noncompartmental analysis was 143 (80–239)%. Calculated terminal half-life was 963 minutes.Conclusions and clinical relevanceThe high-concentration formulation of buprenorphine administered subcutaneously had a large volume of distribution and a rapid absorption phase followed by slower, delayed absorption. The high estimate of bioavailability should be interpreted with caution as values above 100% are most commonly related to experimental issues.  相似文献   

7.
ObjectiveTo compare the effects of hydromorphone and butorphanol in horses undergoing arthroscopy and describe the pharmacokinetics of hydromorphone in anesthetized horses.Study designRandomized controlled clinical trial.AnimalsA total of 40 adult horses admitted for elective arthroscopy.MethodsHorses were randomly assigned to be administered intravenous hydromorphone (0.04 mg kg–1; group TxH; n = 19) or butorphanol (0.02 mg kg–1; group TxB; n = 21) prior to surgery as part of a standardized anesthetic protocol. Pain was scored by two observers unaware of group assignment using the Equine Utrecht University Scale for Facial Assessment of Pain (EQUUS-FAP) and a composite pain scale (CPS) prior to surgery (baseline), 2 hours (P2) and 4 hours (P4) following recovery from anesthesia. Blood samples were collected at various time points for determination of plasma hydromorphone concentration using liquid chromatography–tandem mass spectrometry. Data were analyzed with a mixed-effect model.ResultsMedian (range) baseline EQUUS-FAP was 1.2 (0.0–4.0) with no effect of group, time points or interaction. Baseline CPS was similar between groups. Group TxH baseline CPS was 2.5 (0.0–10.0), increased at P2 [4.5 (0–10.0); p = 0.046] and returned to baseline values at P4 [3.0 (0.0–11.0)]. Group TxB baseline CPS was 2.0 (0.0–8.0), increased at P2 [3.5 (0.0–11.0); p = 0.009] and P4 [5.0 (0.0–11.0); p < 0.001]. Pharmacokinetic terminal half-life was 774 ± 82.3 minutes, area under the curve was 1362 ± 314 ng minutes mL–1, clearance was 30.7 ± 7.23 mL minute–1 kg–1 and volume of distribution at steady state was 884 ± 740 mL kg–1.ConclusionsHydromorphone, but not butorphanol, decreased CPS back to baseline at P4 after recovery.Clinical relevanceHydromorphone may provide superior postoperative analgesia compared with butorphanol in horses undergoing arthroscopy.  相似文献   

8.
ObjectiveTo evaluate the pharmacokinetics, in dogs, of liposome–encapsulated oxymorphone and hydromorphone made by the ammonium sulfate gradient loading technique (ASG).AnimalsFour healthy purpose–bred Beagles aged 9.5 ± 3.2 months and weighing 13.4 ± 2.3 kg.Study designRandomized cross–over design.MethodsEach dog was given either 4.0 mg kg?1 of ASG–oxymorphone or 8.0 mg kg?1 of ASG–hydromorphone SC on separate occasions with a 3–month washout period. Blood was collected at baseline and at serial time points up to 1032 hours (43 days) after injection for determination of serum opioid concentrations. Serum opioid concentrations were measured with HPLC–MS and pharmacokinetic parameters were calculated using commercial software and non–compartmental methods.ResultsSerum concentrations of oxymorphone remained above the limit of quantification for 21 days, while those for hydromorphone remained above the limit of quantification for 29 days. Cmax for ASG–oxymorphone was 7.5 ng mL?1; Cmax for ASG–hydromorphone was 5.7 ng mL?1.Conclusions and clinical relevanceOxymorphone and hydromorphone, when encapsulated into liposomes using the ammonium sulfate gradient loading technique, result in measureable serum concentrations for between 3 to 4 weeks. This formulation may have promise in the convenient use of opioids for clinical treatment of chronically painful conditions in dogs.  相似文献   

9.
ObjectiveTo assess the pharmacokinetics of hydromorphone administered intravenously (IV) or subcutaneously (SC) to dogs.Study designRandomized experimental trial.AnimalsSeven healthy male neutered Beagles aged 12.13 ± 1.2 months and weighing 11.72 ± 1.10 kg.MethodsThe study was a randomized Latin square block design. Dogs were randomly assigned to receive hydromorphone hydrochloride 0.1 mg kg−1 or 0.5 mg kg−1 IV (n = 4 dogs) or 0.1 mg kg−1 (n = 6) or 0.5 mg kg−1 (n = 5) SC on separate occasions with a minimum 14-day washout between experiments. Blood was sampled via a vascular access port at serial intervals after drug administration. Serum was analyzed by mass spectrometry. Pharmacokinetic parameters were determined with computer software.ResultsSerum concentrations of hydromorphone decreased quickly after both routes of administration of either dose. The serum half-life, clearance, and volume of distribution after IV hydromorphone at 0.1 mg kg−1 were 0.57 hours (geometric mean), 106.28 mL minute−1 kg−1, and 5.35 L kg−1, and at 0.5 mg kg−1 were 1.00 hour, 60.30 mL minute−1 kg−1, and 5.23 L kg−1, respectively. The serum half-life after SC hydromorphone at 0.1 mg kg−1 and 0.5 mg kg−1 was 0.66 hours and 1.11 hours, respectively.Conclusions and clinical relevanceHydromorphone has a short half-life, suggesting that frequent dosing intervals are needed. Based on pharmacokinetic parameters calculated in this study, 0.1 mg kg−1 IV or SC q 2 hours or a constant rate infusion of hydromorphone at 0.03 mg kg−1 hour−1 are suggested for future studies to assess the analgesic effect of hydromorphone.  相似文献   

10.
ObjectiveTo determine the thermal and mechanical antinociceptive effects of two different subanesthetic constant rate infusions of racemic ketamine in cats.Study designProspective, randomized, blinded, experimental study.AnimalsEight healthy adult domestic shorthair cats (two intact females and six neutered males).MethodsThe thorax and the lower thoracic limbs of each cat were shaved for thermal (TT) and mechanical threshold (MT) testing and a cephalic catheter was placed. Three intravenous treatments of equivalent volume were given as loading dose (LD) followed by an infusion for 2 hours: (K5) 0.5 mg kg?1 ketamine followed by 5 μg kg?1 minute?1 ketamine infusion, (K23) 0.5 mg kg?1 ketamine followed by 23 μg kg?1 minute?1 ketamine infusion or (S) 0.9% saline solution. Effects on behavior, sedation scores, MT and TT were obtained prior to drug treatment and 0.25, 0.5, 0.75, 1, 1.5, 2, 2.25, 2.5 2.75, 3 hours then every 0.5 hours for 7 hours and 10, 12, 14 and 26 hours after loading dose administration.ResultsKetamine induced mild sedation for the period of the infusion, no adverse behavioral effects were observed. Thermal threshold was significantly higher than baseline (K5: 44.5 ± 0.7 °C; K23: 44.5 ± 0.5 °C) at 15 minutes in the K5 group (46.8 ± 3.5 °C) and at 45 minutes in the K23 group (47.1 ± 4.1 °C). In the K23 group TT was significantly increased compared to S and K5 at 45 minutes. In K5 at 15 minutes MT (9.6 ± 4.0 N) was different to baseline (6.1 ± 0.8 N) and to the S group (5.9 ± 2.3 N).Conclusion and clinical relevanceLow dose rate ketamine infusions minimally affect thermal and mechanical antinociception in cats. Further studies with different nociceptive testing methods are necessary to assess whether ketamine could be a useful analgesic in cats.  相似文献   

11.
ObjectiveTo compare the pharmacokinetics and pharmacodynamics of hydromorphone in horses after intravenous (IV) and intramuscular (IM) administration.Study designRandomized, masked, crossover design.AnimalsA total of six adult horses weighing [mean ± standard deviation (SD))] 447 ± 61 kg.MethodsHorses were administered three treatments with a 7 day washout. Treatments were hydromorphone 0.04 mg kg⁻1 IV with saline administered IM (H-IV), hydromorphone 0.04 mg kg⁻1 IM with saline IV (H-IM), or saline IV and IM (P). Blood was collected for hydromorphone plasma concentration at multiple time points for 24 hours after treatments. Pharmacodynamic data were collected for 24 hours after treatments. Variables included thermal nociceptive threshold, heart rate (HR), respiratory frequency (fR), rectal temperature, and fecal weight. Data were analyzed using mixed-effects linear models. A p value of less than 0.05 was considered statistically significant.ResultsThe mean ± SD hydromorphone terminal half-life (t1/2), clearance and volume of distribution of H-IV were 19 ± 8 minutes, 79 ± 12.9 mL minute⁻1 kg⁻1 and 1125 ± 309 mL kg⁻1. The t1/2 was 26.7 ± 9.25 minutes for H-IM. Area under the curve was 518 ± 87.5 and 1128 ± 810 minute ng mL⁻1 for H-IV and H-IM, respectively. The IM bioavailability was 217%. The overall thermal thresholds for both H-IV and H-IM were significantly greater than P (p < 0.0001 for both) and baseline (p = 0.006). There was no difference in thermal threshold between H-IV and H-IM. No difference was found in physical examination variables among groups or in comparison to baseline. Fecal weight was significantly less than P for H-IV and H-IM (p = 0.02).Conclusions and clinical relevanceIM hydromorphone has high bioavailability and provides a similar degree of antinociception to IV administration.IM hydromorphone in horses provides a similar degree and duration of antinociception to IV administration.  相似文献   

12.
The role of ketamine (K) in pain management is controversial. It is reported to provide visceral analgesia in cats. This study aimed to assess its somatic actions using a thermal threshold (TT) model. Six cats (four spayed females, two castrated males, 4.3–7.2 kg) participated in the study. The day before each study, the thorax of each of the cats was shaved and a cephalic catheter was placed. TT was measured using a device specifically developed for cats. A heater element and temperature sensor housed in a small probe were held against the thorax of the cats with an elastic band and pressure bladder to assure consistent contact. The skin temperature was recorded before each test, then the heater was activated. When the cat responded by flinching, turning, or jumping, the stimulus was terminated and the threshold temperature was recorded. Treatments were 2 mg kg?1 of K (10 mg mL?1), or 0.2 mL kg?1 of saline (S) IV, given in a randomized cross‐over design with at least 1 week between treatments. The investigator was blinded to the treatment. TT was measured thrice before treatment (baseline threshold) at 15 minutes, then every 30 minutes for 8 hours and once at 24 hours after injection. Data were analyzed using a four‐factor anova . Cats were sedated for 45 minutes following K treatment. There was no difference in baseline TT between treatments (K = 41.9 ± 1.7 °C, S = 41.0 ± 1.45 °C), and no change in TT at any time in the S group. TT increased significantly at 15 and 30 minutes after K, then decreased below baseline values between 210 and 390 minutes, with a nadir of 38.8 ± ± 1.05 °C at 390 minutes. During this time period, cats exhibited normal activity, but responses to thermal stimuli were exaggerated. This study suggested that K caused a delayed onset hyperalgesia in cats.  相似文献   

13.
ObjectiveTo describe simultaneous pharmacokinetics (PK) and thermal antinociception after intravenous (IV), intramuscular (IM) and subcutaneous (SC) buprenorphine in cats.Study designRandomized, prospective, blinded, three period crossover experiment.AnimalsSix healthy adult cats weighing 4.1 ± 0.5 kg.MethodsBuprenorphine (0.02 mg kg?1) was administered IV, IM or SC. Thermal threshold (TT) testing and blood collection were conducted simultaneously at baseline and at predetermined time points up to 24 hours after administration. Buprenorphine plasma concentrations were determined by liquid chromatography tandem mass spectrometry. TT was analyzed using anova (p < 0.05). A pharmacokinetic-pharmacodynamic (PK-PD) model of the IV data was described using a model combining biophase equilibration and receptor association-dissociation kinetics.ResultsTT increased above baseline from 15 to 480 minutes and at 30 and 60 minutes after IV and IM administration, respectively (p < 0.05). Maximum increase in TT (mean ± SD) was 9.3 ± 4.9 °C at 60 minutes (IV), 4.6 ± 2.8 °C at 45 minutes (IM) and 1.9 ± 1.9 °C at 60 minutes (SC). TT was significantly higher at 15, 60, 120 and 180 minutes, and at 15, 30, 45, 60 and 120 minutes after IV administration compared to IM and SC, respectively. IV and IM buprenorphine concentration-time data decreased curvilinearly. SC PK could not be modeled due to erratic absorption and disposition. IV buprenorphine disposition was similar to published data. The PK-PD model showed an onset delay mainly attributable to slow biophase equilibration (t1/2ke0 = 47.4 minutes) and receptor binding (kon = 0.011 mL ng?1 minute?1). Persistence of thermal antinociception was due to slow receptor dissociation (t1/2koff = 18.2 minutes).Conclusions and clinical relevanceIV and IM data followed classical disposition and elimination in most cats. Plasma concentrations after IV administration were associated with antinociceptive effect in a PK-PD model including negative hysteresis. At the doses administered, the IV route should be preferred over the IM and SC routes when buprenorphine is administered to cats.  相似文献   

14.

Objective

To determine the pharmacokinetics and effects on thermal thresholds (TT) of two fentanyl constant rate infusions in awake cats.

Study design

A blinded, randomized crossover study.

Animals

A group of six healthy female cats, aged 3 ± 1 years, weighing 4.1 ± 0.7 kg.

Methods

Skin temperature (TSKIN) and TT were evaluated using a wireless TT device. TSKIN, TT, sedation score (SS) and blood samples were collected before an intravenous loading dose (LD; over 5 seconds) and at specific time points during (360 minutes) and after infusion. Each cat was administered two treatments: fentanyl (LD 3 μg kg?1, infusion 3 μg kg?1 hour?1; treatment F3) or fentanyl (LD 5 μg kg?1, infusion 5 μg kg?1 hour?1; treatment F5). SS between treatments was analyzed using a Kruskal–Wallis test. Statistical analysis of TT and TSKIN was performed using analysis of variance with appropriate post hoc test (p < 0.05).

Results

TSKIN did not vary over time for each treatment. SS did not differ between treatments. TTs were significantly higher than baseline at 15 minutes after LD for F3 and F5. TT was significantly increased at 30, 90, 120, 180 and 300 minutes in treatment F5 but not in F3. Plasma fentanyl concentrations decreased rapidly in both treatments over the first 30 minutes after infusion. The terminal half-life was 3.31 (2.93–4.41) hours for F3 and 3.67 (3.39–4.32) hours for F5 (median, range). Systemic clearance for treatments F3 and F5 was 1.95 (1.46–2.44) and 2.25 (1.98–2.47) L hour?1 kg?1 (median, range), respectively. Plasma concentrations <1.84 ng mL?1 were not associated with a significant increase in TT.

Conclusions

and clinical relevance A fentanyl infusion rate of 5 μg kg?1 hour?1 increased TT during the infusion period. Effects on TT were lost rapidly with cessation of the infusion.  相似文献   

15.
ObjectiveTo report serum cardiac troponin I (cTnI) and C-reactive protein (CRP) concentrations in dogs anesthetized for elective surgery using two anesthetic protocols.Study designProspective, randomized clinical study.AnimalsTwenty client-owned dogs presenting for elective ovariohysterectomy or castration.MethodsThe dogs were randomized into two groups. All dogs were premedicated with glycopyrrolate (0.011 mg kg?1) and hydromorphone (0.1 mg kg?1) IM approximately 30 minutes prior to induction of anesthesia. Anesthesia in dogs in group 1 was induced with propofol (6 mg kg?1) IV to effect and in dogs in group 2 with diazepam (0.2 mg kg?1) IV followed by etomidate (2 mg kg?1) IV to effect. For maintenance of anesthesia, group 1 received sevoflurane (adjustable vaporizer setting 0.5–4%) and group 2 received a combination of fentanyl (0.8 μg kg?1 minute?1) and midazolam (8.0 μg kg?1 minute?1) IV plus sevoflurane (adjustable vaporizer setting 0.5–4%) to maintain anesthesia. Serum cTnI and CRP concentrations were measured at baseline and 6, 18, and 24 hours post-anesthetic induction. Biochemical analysis was performed at baseline. Lactate was obtained at baseline and 6 hours post-anesthetic induction. Heart rate and mean arterial blood pressure were measured intra-operatively.ResultsBaseline serum cTnI and CRP concentrations were comparable between groups. A significant difference in serum cTnI or CRP concentrations was not detected post-operatively between groups at any time point. Serum CRP concentrations were significantly increased post-anesthetic induction in both groups, which was attributed to surgical trauma.Conclusions and clinical relevanceThere was no significant difference in serum cTnI and CRP concentrations between anesthetic protocols. Further investigation in a larger number of dogs is necessary to confirm the current findings.  相似文献   

16.
ObjectiveTo evaluate the effects of dexmedetomidine alone or in combination with different opioids on intraocular pressure (IOP) in dogs.Study designExperimental, prospective, crossover, randomized, blinded study.AnimalsA total of six Beagle dogs (two males and four females) aged 2 years and weighing 15.9 ± 2.9 kg (mean ± standard deviation).MethodsDogs were distributed randomly into seven treatments (n = 6 per treatment) and were administered dexmedetomidine alone (10 μg kg–1; Dex) or in combination with butorphanol (0.15 mg kg–1; DexBut), meperidine (5 mg kg–1; DexMep), methadone (0.5 mg kg–1; DexMet), morphine (0.5 mg kg–1; DexMor), nalbuphine (0.5 mg kg–1; DexNal) or tramadol (5 mg kg–1; DexTra). All drugs were administered intramuscularly. IOP was measured before drug injection (time 0, baseline) and every 15 minutes thereafter for 120 minutes (T15–T120).ResultsThere were significant reductions in IOP compared with baseline in treatments Dex and DexMep at times T30–T120, and in treatment DexMet at T15–T90. IOP decreased compared with baseline in treatments DexBut, DexNal and DexTra at all evaluation times. No changes in IOP were seen in treatment DexMor. The mean IOP values in treatment DexMet at T105–T120 were higher than those for other treatments.Conclusions and clinical relevanceDexmedetomidine alone or in combination with butorphanol, meperidine, methadone, nalbuphine or tramadol resulted in decreased IOP for 120 minutes in dogs. The magnitude of the reduction was small and lacked clinical significance.  相似文献   

17.
ObjectiveTo assess the potential of a thermal carbon dioxide (CO2) laser to explore antinociception in pain-free cats.Study designExperimental, prospective, blinded, randomized study.AnimalsSixty healthy adult female cats with a (mean ± standard deviation) weight of 3.3 ± 0.6 kg.MethodsCats were systematically allocated to one of six treatments: saline 0.2 mL per cat; morphine 0.5 mg kg−1; buprenorphine 20 μg kg−1; medetomidine 2 μg kg−1; tramadol 2 mg kg−1, and ketoprofen 2 mg kg−1. Latency to respond to thermal stimulation was assessed at baseline and at intervals of 15–30, 30–45, 45–60, 60–75, 90–105 and 120–135 minutes. Thermal thresholds were assessed using time to respond behaviourally to stimulation with a 500 mW CO2 laser. Within-treatment differences in response latency were assessed using Friedman’s test. Differences amongst treatments were assessed using independent Kruskal–Wallis tests. Where significant effects were identified, pairwise comparisons were conducted to elucidate the direction of the effect.ResultsCats treated with morphine (X2 = 12.90, df = 6, p = 0.045) and tramadol (X2 = 20.28, df = 6, p = 0.002) showed significant increases in latency to respond. However, subsequent pairwise comparisons indicated that differences in latencies at specific time-points were significant (p < 0.05) only for tramadol at 60–75 and 90–105 minutes after administration (21.9 and 43.6 seconds, respectively) in comparison with baseline (11.0 seconds). No significant pairwise comparisons were found within the morphine treatment. Injections of saline, ketoprofen, medetomidine or buprenorphine showed no significant effect on latency to respond.Conclusions and clinical relevanceThe CO2 laser technique may have utility in the assessment of thermal nociceptive thresholds in pain-free cats after analgesic administration and may provide a simpler alternative to existing systems. Further exploration is required to examine its sensitivity and comparative utility.  相似文献   

18.
ObjectiveTo determine the effects of intravenous (IV) premedication with acepromazine, butorphanol or their combination, on the propofol anesthetic induction dosage in dogs.Study designProspective, blinded, Latin square design.AnimalsA total of three male and three female, healthy Beagle dogs, aged 3.79 ± 0.02 years, weighing 10.6 ± 1.1 kg, mean ± standard deviation.MethodsEach dog was assigned to one of six IV treatments weekly: 0.9% saline (treatment SAL), low-dose acepromazine (0.02 mg kg–1; treatment LDA), high-dose acepromazine (0.04 mg kg–1; treatment HDA), low-dose butorphanol (0.2 mg kg–1; treatment LDB), high-dose butorphanol (0.4 mg kg–1; treatment HDB); and a combination of acepromazine (0.02 mg kg–1) with butorphanol (0.2 mg kg–1; treatment ABC). Physiologic variables and sedation scores were collected at baseline and 10 minutes after premedication. Then propofol was administered at 1 mg kg–1 IV over 15 seconds, followed by boluses (0.5 mg kg–1 over 5 seconds) every 15 seconds until intubation. Propofol dose, physiologic variables, recovery time, recovery score and adverse effects were monitored and recorded. Data were analyzed using mixed-effects anova (p < 0.05).ResultsPropofol dosage was lower in all treatments than in treatment SAL (4.4 ± 0.5 mg kg–1); the largest decrease was recorded in treatment ABC (1.7 ± 0.3 mg kg–1). Post induction mean arterial pressures (MAPs) were lower than baseline values of treatments LDA, HDA and ABC. Apnea and hypotension (MAP < 60 mmHg) developed in some dogs in all treatments with the greatest incidence of hypotension in treatment ABC (4/6 dogs).Conclusions and clinical relevanceAlthough the largest decrease in propofol dosage required for intubation was after IV premedication with acepromazine and butorphanol, hypotension and apnea still occurred.  相似文献   

19.
ObjectiveTo evaluate alfaxalone for total intravenous anesthesia (TIVA) in rabbits premedicated with dexmedetomidine or dexmedetomidine and buprenorphine.Study designCrossover study (part 1) with observational study (part 2).AnimalsA total of eight New Zealand White rabbits (Oryctolagus cuniculus), four female and four male, aged 12–16 weeks and weighing 2.8–3.5 kg in part 1. Separately, four additional rabbits in part 2.MethodsCrossover study design with eight rabbits per treatment. Rabbits were administered treatment D, dexmedetomidine (0.2 mg kg–1), or treatment DB, dexmedetomidine (0.1 mg kg–1) and buprenorphine (0.05 mg kg–1) intramuscularly. Anesthesia was induced with alfaxalone intravenously until a supraglottic airway device was placed to deliver 100% oxygen. Anesthesia was maintained with alfaxalone (TIVA). Infusion rates were adjusted to achieve an absent pedal withdrawal reflex. Heart rate, respiratory rate, noninvasive blood pressure, end-tidal carbon dioxide partial pressure and peripheral hemoglobin oxygen saturation (SpO2) were recorded every 5 minutes. Subsequently, four rabbits underwent ovariohysterectomy using treatment DB and alfaxalone TIVA.ResultsThe mean ± standard deviation alfaxalone infusion rate was 9.6 ± 2.6 and 4.5 ± 1.3 mg kg–1 hour–1 for treatments D and DB, respectively. In both treatments, blood pressure remained within acceptable range and SpO2 was > 95%. Postinduction apnea and respiratory depression were observed in both treatments and managed with manual positive pressure ventilation. Four separate rabbits underwent successful ovariohysterectomy with treatment DB and alfaxalone TIVA. One rabbit required supplementation with inhalant anesthesia; three rabbits were successfully maintained using alfaxalone TIVA alone.Conclusions and clinical relevancePremedication with dexmedetomidine–buprenorphine combined with alfaxalone TIVA may be a viable alternative for performing abdominal surgery in the rabbit. The use of supplemental oxygen and ability to provide respiratory support are advised.  相似文献   

20.
Hydromorphone (HY) has not been objectively assessed as an analgesic in cats. It has been suggested that butorphanol (B) can have a synergistic action with pure μ‐agonists. The aim of this study was to assess the antinociceptive activity of a single dose of HY, and to examine the effect of concurrent B administration on the thermal threshold (TT). Thermal thresholds were measured following IM administration of HY, B, a combination of B and HY (HY‐B), or saline (S). Six cats (four spayed females, two castrated males, 4.75–6.8 kg) were used. Each cat received HY (0.1 mg kg?1), B (0.4 mg kg?1), HY (0.1 mg kg?1), and B (0.4 mg kg?1) (HY‐B), or S (0.05 mL kg?1) in a randomized, blinded, cross‐over study design. Each cat received each treatment, with at least 12 days interval between the treatments. All injections were IM randomized to left or right quadriceps using a 24 SWG needle. Twenty‐four hours prior to each study, the thorax of each of the cats was shaved. On the day of the study, TT was measured using a thorax‐mounted thermal threshold‐testing device specifically developed for cats. Skin temperature was recorded before each test and then the heater was activated. When the cat responded by flinching, turning, or jumping, the stimulus was terminated and the threshold temperature was recorded. Three baseline thresholds were recorded over 1 hour before IM injection of test drug. Thermal threshold cut‐off was 55.5 °C. TT was measured at 5 and 15 minutes, every 15 to 360 minutes, every 30 minutes to 8 hours, every hour to 12 hours, and at 24 hours post‐injection. Threshold data were analyzed using an anova with a repeat factor of time. Behavioral adverse effects (dysphoria) were associated with B administration, but not with HY or HY‐B administration (these produced calm euphoria). The control group was stable over time (p = 0.22) (mean threshold 40.15 °C). Overall, there was no period effect, no significant effect of administering B, but a significant effect (raised TT) of administering HY or HY‐B. If the mean value of one of the experimental groups differed from the control group (40.075 °C) by more than 2.355 °C (>42.425 °C), that mean was significantly different from control at p < 0.05 (Bonferroni's t‐tests). This occurred between 15 and 165 minutes for B, from 15 to 345 minutes for HY, and between 15 and 540 minutes for HY‐B. In this model, HY provided up to 5.75 hours of antinociception at 0.1 mg kg?1, and concurrent administration of butorphanol (0.4 mg kg?1) decreased the intensity of antinociception over the first 2 hours, but extended the duration of significant antinociception to about 9 hours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号